Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines that scale easily in a distributed environment. Spark NLP comes with 1100+ pretrained pipelines and models in more than 192+ languages. It supports state-of-the-art transformers such as BERT, XLNet, ELMO, ALBERT, and Universal Sentence Encoder that can be used seamlessly in a cluster. It also offers Tokenization, Word Segmentation, Part-of-Speech Tagging, Named Entity Recognition, Dependency Parsing, Spell Checking, Multi-class Text Classification, Multi-class Sentiment Analysis, Machine Translation (+180 languages), Summarization and Question Answering (Google T5), and many more NLP tasks.
Take a look at our official Spark NLP page: http://nlp.johnsnowlabs.com/ for user documentation and examples
- Slack For live discussion with the Spark NLP community and the team
- GitHub Bug reports, feature requests, and contributions
- Discussions Engage with other community members, share ideas, and show off how you use Spark NLP!
- Medium Spark NLP articles
- YouTube Spark NLP video tutorials
- Features
- Requirements
- Quick Start
- Apache Spark Support
- Databricks Support
- EMR Support
- Using Spark NLP
- Pipelines & Models
- Examples
- FAQ
- Troubleshooting
- Citation
- Contributing
- Tokenization
- Trainable Word Segmentation
- Stop Words Removal
- Token Normalizer
- Document Normalizer
- Stemmer
- Lemmatizer
- NGrams
- Regex Matching
- Text Matching
- Chunking
- Date Matcher
- Sentence Detector
- Deep Sentence Detector (Deep learning)
- Dependency parsing (Labeled/unlabeled)
- Part-of-speech tagging
- Sentiment Detection (ML models)
- Spell Checker (ML and DL models)
- Word Embeddings (GloVe and Word2Vec)
- BERT Embeddings (TF Hub models)
- ELMO Embeddings (TF Hub models)
- ALBERT Embeddings (TF Hub models)
- XLNet Embeddings
- Universal Sentence Encoder (TF Hub models)
- BERT Sentence Embeddings (42 TF Hub models)
- Sentence Embeddings
- Chunk Embeddings
- Unsupervised keywords extraction
- Language Detection & Identification (up to 375 languages)
- Multi-class Sentiment analysis (Deep learning)
- Multi-label Sentiment analysis (Deep learning)
- Multi-class Text Classification (Deep learning)
- Neural Machine Translation
- Text-To-Text Transfer Transformer (Google T5)
- Named entity recognition (Deep learning)
- Easy TensorFlow integration
- GPU Support
- Full integration with Spark ML functions
- +710 pre-trained models in +192 languages!
- +450 pre-trained pipelines in +192 languages!
- Multi-lingual NER models: Arabic, Bengali, Chinese, Danish, Dutch, English, Finnish, French, German, Hewbrew, Italian, Japanese, Korean, Norwegian, Persian, Polish, Portuguese, Russian, Spanish, Swedish, and Urdu.
In order to use Spark NLP you need the following requirements:
- Java 8
- Apache Spark 2.4.x (or Apache Spark 2.3.x)
This is a quick example of how to use Spark NLP pre-trained pipeline in Python and PySpark:
$ java -version
# should be Java 8 (Oracle or OpenJDK)
$ conda create -n sparknlp python=3.6 -y
$ conda activate sparknlp
$ pip install spark-nlp==2.7.4 pyspark==2.4.7
In Python console or Jupyter Python3
kernel:
# Import Spark NLP
from sparknlp.base import *
from sparknlp.annotator import *
from sparknlp.pretrained import PretrainedPipeline
import sparknlp
# Start Spark Session with Spark NLP
# start() functions has two parameters: gpu and spark23
# sparknlp.start(gpu=True) will start the session with GPU support
# sparknlp.start(spark23=True) is when you have Apache Spark 2.3.x installed
spark = sparknlp.start()
# Download a pre-trained pipeline
pipeline = PretrainedPipeline('explain_document_dl', lang='en')
# Your testing dataset
text = """
The Mona Lisa is a 16th century oil painting created by Leonardo.
It's held at the Louvre in Paris.
"""
# Annotate your testing dataset
result = pipeline.annotate(text)
# What's in the pipeline
list(result.keys())
Output: ['entities', 'stem', 'checked', 'lemma', 'document',
'pos', 'token', 'ner', 'embeddings', 'sentence']
# Check the results
result['entities']
Output: ['Mona Lisa', 'Leonardo', 'Louvre', 'Paris']
For more examples, you can visit our dedicated repository to showcase all Spark NLP use cases!
Spark NLP 2.7.4 has been built on top of Apache Spark 2.4.x and fully supports Apache Spark 2.3.x:
Spark NLP | Apache Spark 2.3.x | Apache Spark 2.4.x |
---|---|---|
2.7.x | YES | YES |
2.6.x | YES | YES |
2.5.x | YES | YES |
2.4.x | Partially | YES |
1.8.x | Partially | YES |
1.7.x | YES | NO |
1.6.x | YES | NO |
1.5.x | YES | NO |
NOTE: Starting 2.5.4 release, we support both Apache Spark 2.4.x and Apache Spark 2.3.x at the same time.
Find out more about Spark NLP
versions from our release notes.
Spark NLP 2.7.4 has been tested and is compatible with the following runtimes:
- 6.2
- 6.2 ML
- 6.3
- 6.3 ML
- 6.4
- 6.4 ML
- 6.5
- 6.5 ML
Spark NLP 2.7.4 has been tested and is compatible with the following EMR releases:
- 5.26.0
- 5.27.0
Full list of EMR releases.
This library has been uploaded to the spark-packages repository.
The benefit of spark-packages is that makes it available for both Scala-Java and Python
To use the most recent version on Apache Spark 2.4.x just add the --packages com.johnsnowlabs.nlp:spark-nlp_2.11:2.7.4
to you spark command:
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.11:2.7.4
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.11:2.7.4
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.11:2.7.4
This can also be used to create a SparkSession manually by using the spark.jars.packages
option in both Python and Scala.
NOTE: To use Spark NLP with GPU you can use the dedicated GPU package com.johnsnowlabs.nlp:spark-nlp-gpu_2.11:2.7.4
NOTE: To use Spark NLP on Apache Spark 2.3.x you should instead use the following packages:
- CPU:
com.johnsnowlabs.nlp:spark-nlp-spark23_2.11:2.7.4
- GPU:
com.johnsnowlabs.nlp:spark-nlp-gpu-spark23_2.11:2.7.4
NOTE: In case you are using large pretrained models like UniversalSentenceEncoder, you need to have the following set in your SparkSession:
spark-shell --driver-memory 16g --conf spark.kryoserializer.buffer.max=1000M --packages com.johnsnowlabs.nlp:spark-nlp_2.11:2.7.4
Our package is deployed to maven central. To add this package as a dependency in your application:
spark-nlp on Apache Spark 2.4.x:
<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp -->
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp_2.11</artifactId>
<version>2.7.4</version>
</dependency>
spark-nlp-gpu:
<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu -->
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-gpu_2.11</artifactId>
<version>2.7.4</version>
</dependency>
spark-nlp on Apache Spark 2.3.x:
<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-spark23 -->
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-spark23_2.11</artifactId>
<version>2.7.4</version>
</dependency>
spark-nlp-gpu:
<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu-spark23 -->
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-gpu-spark23_2.11</artifactId>
<version>2.7.4</version>
</dependency>
spark-nlp on Apache Spark 2.4.x:
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "2.7.4"
spark-nlp-gpu:
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "2.7.4"
spark-nlp on Apache Spark 2.3.x:
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-spark23
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-spark23" % "2.7.4"
spark-nlp-gpu:
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu-spark23
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu-spark23" % "2.7.4"
Maven Central: https://mvnrepository.com/artifact/com.johnsnowlabs.nlp
If you installed pyspark through pip/conda, you can install spark-nlp
through the same channel.
Pip:
pip install spark-nlp==2.7.4
Conda:
conda install -c johnsnowlabs spark-nlp
PyPI spark-nlp package / Anaconda spark-nlp package
Then you'll have to create a SparkSession either from Spark NLP:
import sparknlp
spark = sparknlp.start()
or manually:
spark = SparkSession.builder \
.appName("Spark NLP")\
.master("local[4]")\
.config("spark.driver.memory","16G")\
.config("spark.driver.maxResultSize", "0") \
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.11:2.7.4")\
.config("spark.kryoserializer.buffer.max", "1000M")\
.getOrCreate()
If using local jars, you can use spark.jars
instead for a comma delimited jar files. For cluster setups, of course you'll have to put the jars in a reachable location for all driver and executor nodes.
Quick example:
import sparknlp
from sparknlp.pretrained import PretrainedPipeline
#create or get Spark Session
spark = sparknlp.start()
sparknlp.version()
spark.version
#download, load, and annotate a text by pre-trained pipeline
pipeline = PretrainedPipeline('recognize_entities_dl', 'en')
result = pipeline.annotate('The Mona Lisa is a 16th century oil painting created by Leonardo')
- FAT-JAR for CPU on Apache Spark 2.4.x
sbt assembly
- FAT-JAR for GPU on Apache Spark 2.4.x
sbt -Dis_gpu=true assembly
- FAT-JAR for CPU on Apache Spark 2.3.x
sbt -Dis_spark23=true assembly
- FAT-JAR for GPU on Apache Spark 2.3.x
sbt -Dis_gpu=true -Dis_spark23=true assembly
If for some reason you need to use the JAR, you can either download the Fat JARs provided here or download it from Maven Central.
To add JARs to spark programs use the --jars
option:
spark-shell --jars spark-nlp.jar
The preferred way to use the library when running spark programs is using the --packages
option as specified in the spark-packages
section.
Use either one of the following options
- Add the following Maven Coordinates to the interpreter's library list
com.johnsnowlabs.nlp:spark-nlp_2.11:2.7.4
- Add path to pre-built jar from here in the interpreter's library list making sure the jar is available to driver path
Apart from previous step, install python module through pip
pip install spark-nlp==2.7.4
Or you can install spark-nlp
from inside Zeppelin by using Conda:
python.conda install -c johnsnowlabs spark-nlp
Configure Zeppelin properly, use cells with %spark.pyspark or any interpreter name you chose.
Finally, in Zeppelin interpreter settings, make sure you set properly zeppelin.python to the python you want to use and install the pip library with (e.g. python3
).
An alternative option would be to set SPARK_SUBMIT_OPTIONS
(zeppelin-env.sh) and make sure --packages
is there as shown earlier, since it includes both scala and python side installation.
The easiest way to get this done is by making Jupyter Notebook run using pyspark as follows:
export SPARK_HOME=/path/to/your/spark/folder
export PYSPARK_PYTHON=python3
export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS=notebook
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.11:2.7.4
Alternatively, you can mix in using --jars
option for pyspark + pip install spark-nlp
If not using pyspark at all, you'll have to run the instructions pointed here
Google Colab is perhaps the easiest way to get started with spark-nlp. It requires no installation or set up other than having a Google account.
Run the following code in Google Colab notebook and start using spark-nlp right away.
import os
# Install java
! apt-get install -y openjdk-8-jdk-headless -qq > /dev/null
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["PATH"] = os.environ["JAVA_HOME"] + "/bin:" + os.environ["PATH"]
! java -version
# Install pyspark
! pip install --ignore-installed pyspark==2.4.7
# Install Spark NLP
! pip install --ignore-installed spark-nlp==2.7.4
# Quick SparkSession start
import sparknlp
spark = sparknlp.start()
print("Spark NLP version")
sparknlp.version()
print("Apache Spark version")
spark.version
Here is a live demo on Google Colab that performs sentiment analysis and NER using pretrained spark-nlp models.
-
Create a cluster if you don't have one already
-
On a new cluster or existing one you need to add the following to the
Advanced Options -> Spark
tab:
spark.kryoserializer.buffer.max 1000M
spark.serializer org.apache.spark.serializer.KryoSerializer
-
Check
Enable autoscaling local storage
box to have persistent local storage -
In
Libraries
tab inside your cluster you need to follow these steps:4.1. Install New -> PyPI ->
spark-nlp
-> Install4.2. Install New -> Maven -> Coordinates ->
com.johnsnowlabs.nlp:spark-nlp_2.11:2.7.4
-> Install -
Now you can attach your notebook to the cluster and use Spark NLP!
If your distributed storage is S3 and you don't have a standard Hadoop configuration (i.e. fs.defaultFS) You need to specify where in the cluster distributed storage you want to store Spark NLP's tmp files. First, decide where you want to put your application.conf file
import com.johnsnowlabs.util.ConfigLoader
ConfigLoader.setConfigPath("/somewhere/to/put/application.conf")
And then we need to put in such application.conf the following content
sparknlp {
settings {
cluster_tmp_dir = "somewhere in s3n:// path to some folder"
}
}
Spark NLP offers more than 450+ pre-trained pipelines
in 192 languages
.
English pipelines:
Pipeline | Name | Build | lang |
---|---|---|---|
Explain Document ML | explain_document_ml |
2.4.0 | en |
Explain Document DL | explain_document_dl |
2.4.3 | en |
Recognize Entities DL | recognize_entities_dl |
2.4.3 | en |
Recognize Entities DL | recognize_entities_bert |
2.4.3 | en |
OntoNotes Entities Small | onto_recognize_entities_sm |
2.4.0 | en |
OntoNotes Entities Large | onto_recognize_entities_lg |
2.4.0 | en |
Match Datetime | match_datetime |
2.4.0 | en |
Match Pattern | match_pattern |
2.4.0 | en |
Match Chunk | match_chunks |
2.4.0 | en |
Match Phrases | match_phrases |
2.4.0 | en |
Clean Stop | clean_stop |
2.4.0 | en |
Clean Pattern | clean_pattern |
2.4.0 | en |
Clean Slang | clean_slang |
2.4.0 | en |
Check Spelling | check_spelling |
2.4.0 | en |
Check Spelling DL | check_spelling_dl |
2.5.0 | en |
Analyze Sentiment | analyze_sentiment |
2.4.0 | en |
Analyze Sentiment DL | analyze_sentimentdl_use_imdb |
2.5.0 | en |
Analyze Sentiment DL | analyze_sentimentdl_use_twitter |
2.5.0 | en |
Dependency Parse | dependency_parse |
2.4.0 | en |
Quick example:
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
import com.johnsnowlabs.nlp.SparkNLP
SparkNLP.version()
val testData = spark.createDataFrame(Seq(
(1, "Google has announced the release of a beta version of the popular TensorFlow machine learning library"),
(2, "Donald John Trump (born June 14, 1946) is the 45th and current president of the United States")
)).toDF("id", "text")
val pipeline = PretrainedPipeline("explain_document_dl", lang="en")
val annotation = pipeline.transform(testData)
annotation.show()
/*
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
import com.johnsnowlabs.nlp.SparkNLP
2.5.0
testData: org.apache.spark.sql.DataFrame = [id: int, text: string]
pipeline: com.johnsnowlabs.nlp.pretrained.PretrainedPipeline = PretrainedPipeline(explain_document_dl,en,public/models)
annotation: org.apache.spark.sql.DataFrame = [id: int, text: string ... 10 more fields]
+---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+
| id| text| document| token| sentence| checked| lemma| stem| pos| embeddings| ner| entities|
+---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+
| 1|Google has announ...|[[document, 0, 10...|[[token, 0, 5, Go...|[[document, 0, 10...|[[token, 0, 5, Go...|[[token, 0, 5, Go...|[[token, 0, 5, go...|[[pos, 0, 5, NNP,...|[[word_embeddings...|[[named_entity, 0...|[[chunk, 0, 5, Go...|
| 2|The Paris metro w...|[[document, 0, 11...|[[token, 0, 2, Th...|[[document, 0, 11...|[[token, 0, 2, Th...|[[token, 0, 2, Th...|[[token, 0, 2, th...|[[pos, 0, 2, DT, ...|[[word_embeddings...|[[named_entity, 0...|[[chunk, 4, 8, Pa...|
+---+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+--------------------+
*/
annotation.select("entities.result").show(false)
/*
+----------------------------------+
|result |
+----------------------------------+
|[Google, TensorFlow] |
|[Donald John Trump, United States]|
+----------------------------------+
*/
Please check out our Models Hub for the full list of pre-trained pipelines with examples, demos, benchmarks, and more
Spark NLP offers more than 710+ pre-trained models
in 192 languages
.
Some of the selected languages: Afrikaans, Arabic, Armenian, Basque, Bengali, Breton, Bulgarian, Catalan, Czech, Dutch, English, Esperanto, Finnish, French, Galician, German, Greek, Hausa, Hebrew, Hindi, Hungarian, Indonesian, Irish, Italian, Japanese, Latin, Latvian, Marathi, Norwegian, Persian, Polish, Portuguese, Romanian, Russian, Slovak, Slovenian, Somali, Southern Sotho, Spanish, Swahili, Swedish, Tswana, Turkish, Ukrainian, Zulu
English Models:
Model | Name | Build | Lang |
---|---|---|---|
LemmatizerModel (Lemmatizer) | lemma_antbnc |
2.0.2 | en |
PerceptronModel (POS) | pos_anc |
2.0.2 | en |
PerceptronModel (POS UD) | pos_ud_ewt |
2.2.2 | en |
NerCrfModel (NER with GloVe) | ner_crf |
2.4.0 | en |
NerDLModel (NER with GloVe) | ner_dl |
2.4.3 | en |
NerDLModel (NER with BERT) | ner_dl_bert |
2.4.3 | en |
NerDLModel (OntoNotes with GloVe 100d) | onto_100 |
2.4.0 | en |
NerDLModel (OntoNotes with GloVe 300d) | onto_300 |
2.4.0 | en |
SymmetricDeleteModel (Spell Checker) | spellcheck_sd |
2.0.2 | en |
NorvigSweetingModel (Spell Checker) | spellcheck_norvig |
2.0.2 | en |
ViveknSentimentModel (Sentiment) | sentiment_vivekn |
2.0.2 | en |
DependencyParser (Dependency) | dependency_conllu |
2.0.8 | en |
TypedDependencyParser (Dependency) | dependency_typed_conllu |
2.0.8 | en |
Embeddings:
Model | Name | Build | Lang |
---|---|---|---|
WordEmbeddings (GloVe) | glove_100d |
2.4.0 | en |
BertEmbeddings | bert_base_uncased |
2.4.0 | en |
BertEmbeddings | bert_base_cased |
2.4.0 | en |
BertEmbeddings | bert_large_uncased |
2.4.0 | en |
BertEmbeddings | bert_large_cased |
2.4.0 | en |
ElmoEmbeddings | elmo |
2.4.0 | en |
UniversalSentenceEncoder (USE) | tfhub_use |
2.4.0 | en |
UniversalSentenceEncoder (USE) | tfhub_use_lg |
2.4.0 | en |
AlbertEmbeddings | albert_base_uncased |
2.5.0 | en |
AlbertEmbeddings | albert_large_uncased |
2.5.0 | en |
AlbertEmbeddings | albert_xlarge_uncased |
2.5.0 | en |
AlbertEmbeddings | albert_xxlarge_uncased |
2.5.0 | en |
XlnetEmbeddings | xlnet_base_cased |
2.5.0 | en |
XlnetEmbeddings | xlnet_large_cased |
2.5.0 | en |
Classification:
Model | Name | Build | Lang |
---|---|---|---|
ClassifierDL (with tfhub_use) | classifierdl_use_trec6 |
2.5.0 | en |
ClassifierDL (with tfhub_use) | classifierdl_use_trec50 |
2.5.0 | en |
SentimentDL (with tfhub_use) | sentimentdl_use_imdb |
2.5.0 | en |
SentimentDL (with tfhub_use) | sentimentdl_use_twitter |
2.5.0 | en |
SentimentDL (with glove_100d) | sentimentdl_glove_imdb |
2.5.0 | en |
Quick online example:
# load NER model trained by deep learning approach and GloVe word embeddings
ner_dl = NerDLModel.pretrained('ner_dl')
# load NER model trained by deep learning approach and BERT word embeddings
ner_bert = NerDLModel.pretrained('ner_dl_bert')
// load French POS tagger model trained by Universal Dependencies
val french_pos = PerceptronModel.pretrained("pos_ud_gsd", lang="fr")
// load Italain LemmatizerModel
val italian_lemma = LemmatizerModel.pretrained("lemma_dxc", lang="it")
Quick offline example:
- Loading
PerceptronModel
annotator model inside Spark NLP Pipeline
val french_pos = PerceptronModel.load("/tmp/pos_ud_gsd_fr_2.0.2_2.4_1556531457346/")
.setInputCols("document", "token")
.setOutputCol("pos")
Please check out our Models Hub for the full list of pre-trained models with examples, demo, benchmark, and more
Need more examples? Check out our dedicated Spark NLP Showcase repository to showcase all Spark NLP use cases!
In addition, don't forget to check Spark NLP in Action built by Streamlit.
All examples: spark-nlp-workshop
Check our Articles and Videos page here
We have published a paper that you can cite for the Spark NLP library:
@article{KOCAMAN2021100058,
title = {Spark NLP: Natural language understanding at scale},
journal = {Software Impacts},
pages = {100058},
year = {2021},
issn = {2665-9638},
doi = {https://doi.org/10.1016/j.simpa.2021.100058},
url = {https://www.sciencedirect.com/science/article/pii/S2665963821000063},
author = {Veysel Kocaman and David Talby},
keywords = {Spark, Natural language processing, Deep learning, Tensorflow, Cluster},
abstract = {Spark NLP is a Natural Language Processing (NLP) library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines that can scale easily in a distributed environment. Spark NLP comes with 1100+ pretrained pipelines and models in more than 192+ languages. It supports nearly all the NLP tasks and modules that can be used seamlessly in a cluster. Downloaded more than 2.7 million times and experiencing 9x growth since January 2020, Spark NLP is used by 54% of healthcare organizations as the world’s most widely used NLP library in the enterprise.}
}
}
We appreciate any sort of contributions:
- ideas
- feedback
- documentation
- bug reports
- NLP training and testing corpora
- development and testing
Clone the repo and submit your pull-requests! Or directly create issues in this repo.