Skip to content

Commit

Permalink
hope PyPI.org may parse MD properly (#63)
Browse files Browse the repository at this point in the history
  • Loading branch information
espenhgn authored Jun 17, 2021
1 parent 534fa96 commit d127f01
Show file tree
Hide file tree
Showing 2 changed files with 35 additions and 37 deletions.
70 changes: 34 additions & 36 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Module `hybridLFPy`
# hybridLFPy

Python module implementating a hybrid model scheme for predictions of
Python module implementing a hybrid scheme for predictions of
extracellular potentials (local field potentials, LFPs) of spiking
neuron network simulations.

Expand Down Expand Up @@ -28,29 +28,28 @@ Juelich Research Centre and JARA, Juelich, Germany
## Citation

Should you find `hybridLFPy` useful for your research, please cite the following paper:
```
Espen Hagen, David Dahmen, Maria L. Stavrinou, Henrik Lindén, Tom Tetzlaff,
Sacha J. van Albada, Sonja Grün, Markus Diesmann, Gaute T. Einevoll;
Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks,
Cerebral Cortex, Volume 26, Issue 12, 1 December 2016, Pages 4461–4496,
https://doi.org/10.1093/cercor/bhw237
```

Espen Hagen, David Dahmen, Maria L. Stavrinou, Henrik Lindén, Tom Tetzlaff,
Sacha J. van Albada, Sonja Grün, Markus Diesmann, Gaute T. Einevoll;
Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks,
Cerebral Cortex, Volume 26, Issue 12, 1 December 2016, Pages 4461–4496,
https://doi.org/10.1093/cercor/bhw237


Bibtex source:
```
@article{doi:10.1093/cercor/bhw237,
author = {Hagen, Espen and Dahmen, David and Stavrinou, Maria L. and Lindén, Henrik and Tetzlaff, Tom and van Albada, Sacha J. and Grün, Sonja and Diesmann, Markus and Einevoll, Gaute T.},
title = {Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks},
journal = {Cerebral Cortex},
volume = {26},
number = {12},
pages = {4461-4496},
year = {2016},
doi = {10.1093/cercor/bhw237},
URL = { + http://dx.doi.org/10.1093/cercor/bhw237},
eprint = {/oup/backfile/content_public/journal/cercor/26/12/10.1093_cercor_bhw237/2/bhw237.pdf}
}
```

@article{doi:10.1093/cercor/bhw237,
author = {Hagen, Espen and Dahmen, David and Stavrinou, Maria L. and Lindén, Henrik and Tetzlaff, Tom and van Albada, Sacha J. and Grün, Sonja and Diesmann, Markus and Einevoll, Gaute T.},
title = {Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks},
journal = {Cerebral Cortex},
volume = {26},
number = {12},
pages = {4461-4496},
year = {2016},
doi = {10.1093/cercor/bhw237},
URL = { + http://dx.doi.org/10.1093/cercor/bhw237},
eprint = {/oup/backfile/content_public/journal/cercor/26/12/10.1093_cercor_bhw237/2/bhw237.pdf}
}


## License
Expand All @@ -67,21 +66,20 @@ This software comes without any form of warranty.

First download all the `hybridLFPy` source files using `git`
(http://git-scm.com). Open a terminal window and type:
```
cd $HOME/where/to/put/hybridLFPy
git clone https://github.com/INM-6/hybridLFPy.git
```

$ cd $HOME/where/to/put/hybridLFPy
$ git clone https://github.com/INM-6/hybridLFPy.git


To use `hybridLFPy` from any working folder without copying files, run:
```
(sudo) pip install -e . (--user)
```
$ (sudo) pip install -e . (--user)


Installing it is also possible, but not recommended as things might change with
future pulls from the repository:
```
(sudo) pip install . (--user)
```

$ (sudo) pip install . (--user)


### examples folder

Expand All @@ -93,9 +91,9 @@ Some example script(s) on how to use this module
Source files for autogenerated documentation using `Sphinx` (https://www.sphinx-doc.org).

To compile documentation source files in this directory using sphinx, use:
```
sphinx-build -b html docs documentation
```

$ sphinx-build -b html docs documentation


### Dockerfile

Expand Down
2 changes: 1 addition & 1 deletion hybridLFPy/version.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
version = "0.2rc1"
version = "0.2rc2"

0 comments on commit d127f01

Please sign in to comment.