SuperLaser provides a comprehensive suite of tools and scripts designed for deploying LLMs onto RunPod's serverless infrastructure. Additionally, the deployment utilizes a containerized vLLM engine during runtime, ensuring memory-efficient and high-performance inference capabilities.
- Scalable Deployment: Easily scale your LLM inference tasks with vLLM and RunPod serverless capabilities.
- Cost-Effective: Optimize resource and hardware usage: tensor parallelism and other GPU assets.
- Uses OpenAI's API: Use the OpenAI client for chat, completion, and streaming options.
pip install superlaser
Before you begin, ensure you have:
- A RunPod account.
First step is to obtain an API key from RunPod. Go to your account's console, in the Settings
section, click on API Keys
.
After obtaining a key, set it as an environment variable:
export RUNPOD_API_KEY=<YOUR-API-KEY>
Before spinning up a serverless endpoint, let's first configure a template that we'll pass into the endpoint during staging. The template allows you to set vLLMs Docker image, model, and the container's and volume's disk space:
import os
from superlaser import RunpodHandler as runpod
api_key = os.environ.get("RUNPOD_API_KEY")
template_data = runpod.set_template(
serverless="true",
template_name="superlaser-inf", # Give a name to your template
container_image="runpod/worker-vllm:0.3.1-cuda12.1.0", # Docker image stub
model_name="mistralai/Mistral-7B-v0.1", # Hugging Face model stub
max_model_length=340, # Maximum number of tokens for the engine to handle per request.
container_disk=15,
volume_disk=15,
)
template = runpod(api_key, data=template_data)
print(template().text)
After your template is created, it will return a data dicitionary that includes your template ID. We will pass this template id when configuring the serverless endpoint in the section below:
endpoint_data = runpod.set_endpoint(
gpu_ids="AMPERE_24", # options for gpuIds are "AMPERE_16,AMPERE_24,AMPERE_48,AMPERE_80,ADA_24"
idle_timeout=5,
name="vllm_endpoint",
scaler_type="QUEUE_DELAY",
scaler_value=1,
template_id="template-id",
workers_max=1,
workers_min=0,
)
endpoint = runpod(api_key, data=endpoint_data)
print(endpoint().text)
After your endpoint is staged, it will return a dictionary with your endpoint ID. Pass this endpoint ID to the OpenAI
client and start making API requests!
from openai import OpenAI
endpoint_id = "you-endpoint-id"
client = OpenAI(
api_key=api_key,
base_url=f"https://api.runpod.ai/v2/{endpoint_id}/openai/v1",
)
stream = client.chat.completions.create(
model="mistralai/Mistral-7B-Instruct-v0.1",
messages=[{"role": "user", "content": "To be or not to be"}],
temperature=0,
max_tokens=100,
stream=True,
)
for chunk in stream:
print(chunk.choices[0].delta.content or "", end="", flush=True)
stream = client.completions.create(
model="meta-llama/Llama-2-7b-hf",
prompt="To be or not to be",
temperature=0,
max_tokens=100,
stream=True,
)
for response in stream:
print(response.choices[0].text or "", end="", flush=True)