Multi Person PoseEstimation By PyTorch, based on pytorch_Realtime_Multi-Person_Pose_Estimation repository.
- git submodule init && git submodule update
- Download converted pytorch model.
- Compile the C++ postprocessing:
cd lib/pafprocess; sh make.sh
python demo/picture_demo.py
to run the picture demo.python demo/web_demo.py
to run the web demo.
python evaluate/evaluation.py
to evaluate the model on coco val2017 dataset.- It should have
mAP 0.653
for the rtpose, previous rtpose havemAP 0.577
because we do left and right flip for heatmap and PAF for the evaluation. c
model name | mAP | Inference Time |
---|---|---|
[original rtpose] | 0.653 | - |
Download link: rtpose
The code is developed using python 3.6 on Ubuntu 18.04. NVIDIA GPUs are needed. The code is developed and tested using 4 1080ti GPU cards. Other platforms or GPU cards are not fully tested.
cd training; bash getData.sh
to obtain the COCO 2017 images in/data/root/coco/images/
, keypoints annotations in/data/root/coco/annotations/
, make them look like this:
${DATA_ROOT}
|-- coco
|-- annotations
|-- person_keypoints_train2017.json
|-- person_keypoints_val2017.json
|-- images
|-- train2017
|-- 000000000009.jpg
|-- 000000000025.jpg
|-- 000000000030.jpg
|-- ...
|-- val2017
|-- 000000000139.jpg
|-- 000000000285.jpg
|-- 000000000632.jpg
|-- ...
- Modify the data directory in
train/train_VGG19.py
andpython train/train_VGG19.py
- CVPR'17, Realtime Multi-Person Pose Estimation.
All contributions are welcomed. If you encounter any issue (including examples of images where it fails) feel free to open an issue.
Please cite the paper in your publications if it helps your research:
@InProceedings{cao2017realtime,
title = {Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields},
author = {Zhe Cao and Tomas Simon and Shih-En Wei and Yaser Sheikh},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2017}
}