-
Notifications
You must be signed in to change notification settings - Fork 232
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Bugfix for batched gemv #2481
base: master
Are you sure you want to change the base?
Bugfix for batched gemv #2481
Conversation
Shouldn't CUDA.jl/lib/cublas/wrappers.jl Lines 426 to 438 in 8b54f85
Can you add a test that covers the case that doesn't work right now, and works after the change? |
No, according to the official cuBLAS documentation, definitions of For
For
For |
I will try to add some tests this week. |
See also the CUDA.jl/lib/cublas/wrappers.jl Lines 378 to 384 in bbe625b
|
@maleadt A similar bug was found on |
LGTM, let's just ping the original author of these functions: @lpawela |
@maleadt What is the status of this PR? |
It hangs on me, sorry. I'll have a look within a couple of days. |
I have problems launching tests on this patch.
when launching julia> CUDA.versioninfo()
CUDA runtime 12.6, artifact installation
CUDA driver 12.4
NVIDIA driver 550.90.7
CUDA libraries:
- CUBLAS: 12.6.0
- CURAND: 10.3.7
- CUFFT: 11.2.6
- CUSOLVER: 11.6.4
- CUSPARSE: 12.5.2
- CUPTI: 2024.3.0 (API 24.0.0)
- NVML: 12.0.0+550.90.7
Julia packages:
- CUDA: 5.5.0
- CUDA_Driver_jll: 0.10.0+0
- CUDA_Runtime_jll: 0.15.1+0
Toolchain:
- Julia: 1.10.2
- LLVM: 15.0.7
1 device:
0: NVIDIA GeForce RTX 3080 (sm_86, 7.857 GiB / 10.000 GiB available) |
The changes in this PR seem to triggering some illegal memory access. |
I'm seeing similar issues locally, but I'm having a hard time isolating the problem. Many times, the |
Fix incorrect definition of m and n in gemv_strided_batched!
all the input dimensions should be identical for gemv_batched!
Actually, some more testing today reveals that the illegal memory access I was seeing locally comes from a different test. @lpawela I cannot reproduce the isolated failure of the using CUDA.CUBLAS, GPUArrays
using CUDA, Test, LinearAlgebra
using Adapt
struct ArrayAdaptor{AT} end
Adapt.adapt_storage(::ArrayAdaptor{AT}, xs::AbstractArray) where {AT} = AT(xs)
test_result(a::Number, b::Number; kwargs...) = ≈(a, b; kwargs...)
test_result(a::Missing, b::Missing; kwargs...) = true
test_result(a::Number, b::Missing; kwargs...) = false
test_result(a::Missing, b::Number; kwargs...) = false
function test_result(a::AbstractArray{T}, b::AbstractArray{T}; kwargs...) where {T<:Number}
≈(collect(a), collect(b); kwargs...)
end
function test_result(a::AbstractArray{T}, b::AbstractArray{T};
kwargs...) where {T<:NTuple{N,<:Number} where {N}}
ET = eltype(T)
≈(reinterpret(ET, collect(a)), reinterpret(ET, collect(b)); kwargs...)
end
function test_result(as::NTuple{N,Any}, bs::NTuple{N,Any}; kwargs...) where {N}
all(zip(as, bs)) do (a, b)
test_result(a, b; kwargs...)
end
end
function compare(f, AT::Type{<:AbstractGPUArray}, xs...; kwargs...)
# copy on the CPU, adapt on the GPU, but keep Ref's
cpu_in = map(x -> isa(x, Base.RefValue) ? x[] : deepcopy(x), xs)
gpu_in = map(x -> isa(x, Base.RefValue) ? x[] : adapt(ArrayAdaptor{AT}(), x), xs)
cpu_out = f(cpu_in...)
gpu_out = f(gpu_in...)
test_result(cpu_out, gpu_out; kwargs...)
end
function compare(f, AT::Type{<:Array}, xs...; kwargs...)
# no need to actually run this tests: we have nothing to compoare against,
# and we'll run it on a CPU array anyhow when comparing to a GPU array.
#
# this method exists so that we can at least run the test suite with Array,
# and make sure we cover other tests (that don't call `compare`) too.
return true
end
testf(f, xs...; kwargs...) = compare(f, CuArray, xs...; kwargs...)
m = 20
n = 35
k = 13
@testset for elty in [Float32, Float64, ComplexF32, ComplexF64]
alpha = rand(elty)
beta = rand(elty)
@testset "gemv" begin
@test testf(*, rand(elty, m, n), rand(elty, n))
@test testf(*, transpose(rand(elty, m, n)), rand(elty, m))
@test testf(*, rand(elty, m, n)', rand(elty, m))
x = rand(elty, m)
A = rand(elty, m, m + 1 )
y = rand(elty, n)
dx = CuArray(x)
dA = CuArray(A)
dy = CuArray(y)
@test_throws DimensionMismatch mul!(dy, dA, dx)
A = rand(elty, m + 1, m )
dA = CuArray(A)
@test_throws DimensionMismatch mul!(dy, dA, dx)
x = rand(elty, m)
A = rand(elty, n, m)
dx = CuArray(x)
dA = CuArray(A)
alpha = rand(elty)
dy = CUBLAS.gemv('N', alpha, dA, dx)
hy = collect(dy)
@test hy ≈ alpha * A * x
dy = CUBLAS.gemv('N', dA, dx)
hy = collect(dy)
@test hy ≈ A * x
dy = CuArray(y)
dx = CUBLAS.gemv(elty <: Real ? 'T' : 'C', alpha, dA, dy)
hx = collect(dx)
@test hx ≈ alpha * A' * y
end
if CUBLAS.version() >= v"11.9"
@testset "gemv_batched" begin
x = [rand(elty, m) for i=1:10]
A = [rand(elty, n, m) for i=1:10]
y = [rand(elty, n) for i=1:10]
dx = CuArray{elty, 1}[]
dA = CuArray{elty, 2}[]
dy = CuArray{elty, 1}[]
dbad = CuArray{elty, 1}[]
for i=1:length(A)
push!(dA, CuArray(A[i]))
push!(dx, CuArray(x[i]))
push!(dy, CuArray(y[i]))
if i < length(A) - 2
push!(dbad,CuArray(dx[i]))
end
end
@test_throws DimensionMismatch CUBLAS.gemv_batched!('N', alpha, dA, dx, beta, dbad)
CUBLAS.gemv_batched!('N', alpha, dA, dx, beta, dy)
for i=1:length(A)
hy = collect(dy[i])
y[i] = alpha * A[i] * x[i] + beta * y[i]
@test y[i] ≈ hy
end
dy = CuArray{elty, 1}[]
for i=1:length(A)
push!(dy, CuArray(y[i]))
end
CUBLAS.gemv_batched!(elty <: Real ? 'T' : 'C', alpha, dA, dy, beta, dx)
for i=1:size(A, 3)
hx = collect(dx[i])
x[i] = alpha * A[i]' * y[i] + beta * x[i]
@test x[i] ≈ hx
end
end
end
if CUBLAS.version() >= v"11.9"
@testset "gemv_strided_batched" begin
x = rand(elty, m, 10)
A = rand(elty, n, m, 10)
y = rand(elty, n, 10)
bad = rand(elty, m, 10)
dx = CuArray(x)
dA = CuArray(A)
dy = CuArray(y)
dbad = CuArray(bad)
@test_throws DimensionMismatch CUBLAS.gemv_strided_batched!('N', alpha, dA, dx, beta, dbad)
bad = rand(elty, n, 2)
dbad = CuArray(bad)
@test_throws DimensionMismatch CUBLAS.gemv_strided_batched!('N', alpha, dA, dx, beta, dbad)
CUBLAS.gemv_strided_batched!('N', alpha, dA, dx, beta, dy)
for i=1:size(A, 3)
hy = collect(dy[:, i])
y[:, i] = alpha * A[:, :, i] * x[:, i] + beta * y[:, i]
@test y[:, i] ≈ hy
end
dy = CuArray(y)
CUBLAS.gemv_strided_batched!(elty <: Real ? 'T' : 'C', alpha, dA, dy, beta, dx)
for i=1:size(A, 3)
hx = collect(dx[:, i])
x[:, i] = alpha * A[:, :, i]' * y[:, i] + beta * x[:, i]
@test x[:, i] ≈ hx
end
end
end
end |
I still get the same error, even on a different machine. The command
|
Okay, thanks for confirming! Marked as draft until we figure out the exact issue here. EDIT: does the isolated reproduces also give the same error? |
6f9bcaa
to
fd4dd6d
Compare
5d585c4
to
c850163
Compare
Fix incorrect definition of m and n in gemv_strided_batched!