Skip to content

Commit

Permalink
Update documented derivation of Triangle solver (#71)
Browse files Browse the repository at this point in the history
* Add more details

* Add more detail

* Fix a typo
  • Loading branch information
mikeingold authored Sep 12, 2024
1 parent 8813827 commit c5ee557
Showing 1 changed file with 24 additions and 2 deletions.
26 changes: 24 additions & 2 deletions docs/src/triangle.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,28 @@ Since the geometric transformation from the originally-arbitrary domain to a Bar
= 2A \int_0^1 \int_0^{1-v} f\left( \bar{r}(u,v) \right) \, \text{d}u \, \text{d}v
```

This non-rectangular Barycentric domain prevents a direct application of most numerical integration methods. It can be directly integrated, albeit inefficiently, using nested Gauss-Kronrod quadrature rules. Alternatively, additional transformation could be applied to map this domain onto a rectangular domain.
Since the integral domain is a right-triangle in the Barycentric domain, a nested application of Gauss-Kronrod quadrature rules is capable of computing the result, albeit inefficiently. However, many numerical integration methods that require rectangular bounds can not be directly applied.

**WORK IN PROGRESS:** continued derivation to detail this barycentric-rectangular domain transformation
In order to enable integration methods that operate over rectangular bounds, two coordinate system transformations are applied: the first maps from Barycentric coordinates $(u, v)$ to polar coordinates $(r, \phi)$, and the second is a non-linear map from polar coordinates to a new curvilinear basis $(R, \phi)$.

For the first transformation, let $u = r~\cos\phi$ and $v = r~\sin\phi$ where $\text{d}u~\text{d}v = r~\text{d}r~\text{d}\phi$. The Barycentric triangle's hypotenuse boundary line is described by the function $v(u) = 1 - u$. Substituting in the previous definitions leads to a new boundary line function in polar coordinate space $r(\phi) = 1 / (\sin\phi + \cos\phi)$.
```math
\int_0^1 \int_0^{1-v} f\left( \bar{r}(u,v) \right) \, \text{d}u \, \text{d}v =
\int_0^{\pi/2} \int_0^{1/(\sin\phi+\cos\phi)} f\left( \bar{r}(r,\phi) \right) \, r \, \text{d}r \, \text{d}\phi
```

These integral boundaries remain non-rectangular, so an additional transformation will be applied to a curvilinear $(R, \phi)$ space that normalizes all of the hypotenuse boundary line points to $R=1$. To achieve this, a function $R(r,\phi)$ is required such that $R(r_0, \phi) = 1$ where $r_0 = 1 / (\sin\phi + \cos\phi)$

To achieve this, let $R(r, \phi) = r~(\sin\phi + \cos\phi)$. Now, substituting some terms leads to
```math
\int_0^{\pi/2} \int_0^{1/(\sin\phi+\cos\phi)} f\left( \bar{r}(r,\phi) \right) \, r \, \text{d}r \, \text{d}\phi
= \int_0^{\pi/2} \int_0^{r_0} f\left( \bar{r}(r,\phi) \right) \, \left(\frac{R}{\sin\phi + \cos\phi}\right) \, \text{d}r \, \text{d}\phi
```

Since $\text{d}R/\text{d}r = \sin\phi + \cos\phi$, a change of integral domain leads to
```math
\int_0^{\pi/2} \int_0^{r_0} f\left( \bar{r}(r,\phi) \right) \, \left(\frac{R}{\sin\phi + \cos\phi}\right) \, \text{d}r \, \text{d}\phi
= \int_0^{\pi/2} \int_0^1 f\left( \bar{r}(R,\phi) \right) \, \left(\frac{R}{\left(\sin\phi + \cos\phi\right)^2}\right) \, \text{d}R \, \text{d}\phi
```

The second term in this new integrand function serves as a correction factor that corrects for the impact of the non-linear domain transformation. Since all of the integration bounds are now constants, specialized integration methods can be defined for triangles that performs these domain transformations and then solve the new rectangular integration problem using a wider range of solver options.

2 comments on commit c5ee557

@mikeingold
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/115098

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.13.3 -m "<description of version>" c5ee55711590961f1c28e3ea276d638699c860cb
git push origin v0.13.3

Please sign in to comment.