Skip to content

Commit

Permalink
Add slope interval newton method
Browse files Browse the repository at this point in the history
  • Loading branch information
eeshan9815 committed Jul 18, 2018
1 parent 64f7339 commit cfcb7da
Show file tree
Hide file tree
Showing 3 changed files with 46 additions and 1 deletion.
2 changes: 1 addition & 1 deletion src/IntervalRootFinding.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ export
gauss_seidel_interval, gauss_seidel_interval!,
gauss_seidel_contractor, gauss_seidel_contractor!,
gauss_elimination_interval, gauss_elimination_interval!,
slope
slope, slope_newton1d

export isunique, root_status

Expand Down
5 changes: 5 additions & 0 deletions src/newton1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -204,3 +204,8 @@ and a `debug` boolean argument that prints out diagnostic information."""

newton1d{T}(f::Function, x::Interval{T}; args...) =
newton1d(f, x->D(f,x), x; args...)

function slope_newton1d{T}(f::Function, x::Interval{T};
reltol=eps(T), abstol=eps(T), debug=false, debugroot=false)
newton1d(f, x->slope(f, x), x, reltol=reltol, abstol=abstol, debug=debug, debugroot=debugroot)
end
40 changes: 40 additions & 0 deletions test/newton1d.jl
Original file line number Diff line number Diff line change
Expand Up @@ -84,3 +84,43 @@ three_halves_pi = 3*big_pi/2

end
end

@testset "Testing slope newton1d" begin

f(x) = exp(x^2) - cos(x) #double root
f1(x) = x^4 - 10x^3 + 35x^2 - 50x + 24 #four unique roots
f2(x) = 4567x^2 - 9134x + 4567 #double root
f3(x) = (x^2 - 2)^2 #two double roots
f4(x) = sin(x) - x #triple root at 0
f5(x) = (x^2 - 1)^4 * (x^2 - 2)^4 #two quadruple roots

rts1 = slope_newton1d(sin, -5..5)
rts2 = slope_newton1d(f, -..∞)
rts3 = slope_newton1d(f1, -10..10)
rts4 = slope_newton1d(f3, -10..10)
rts5 = slope_newton1d(f4, -10..10)

@test length(rts1) == 3
L = [ -pi_interval(Float64), 0..0, pi_interval(Float64)]
for i = 1:length(rts1)
@test L[i] in rts1[i].interval && :unique == rts1[i].status
end

@test length(rts2) == 1
@test (0..0) == rts2[1].interval && :unknown == rts2[1].status

@test length(rts3) == 4
L = [1, 2, 3, 4]
for i = 1:length(rts3)
@test L[i] in rts3[i].interval && :unique == rts3[i].status
end

L1 = [-sqrt(2), sqrt(2)]
for i = 1:length(rts4)
@test L1[i] in rts4[i].interval && :unknown == rts4[i].status
end

@test length(rts5) == 1
@test 0 in rts5[1].interval && :unknown == rts5[1].status

end

0 comments on commit cfcb7da

Please sign in to comment.