Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sqrt, cbrt and log for dense diagonal matrices #1156

Merged
merged 3 commits into from
Dec 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 9 additions & 3 deletions src/dense.jl
Original file line number Diff line number Diff line change
Expand Up @@ -890,7 +890,9 @@ julia> log(A)
"""
function log(A::AbstractMatrix)
# If possible, use diagonalization
if ishermitian(A)
if isdiag(A)
return applydiagonal(log, A)
elseif ishermitian(A)
logHermA = log(Hermitian(A))
return ishermitian(logHermA) ? copytri!(parent(logHermA), 'U', true) : parent(logHermA)
elseif istriu(A)
Expand Down Expand Up @@ -969,7 +971,9 @@ sqrt(::AbstractMatrix)

function sqrt(A::AbstractMatrix{T}) where {T<:Union{Real,Complex}}
if checksquare(A) == 0
return copy(A)
return copy(float(A))
elseif isdiag(A)
return applydiagonal(sqrt, A)
elseif ishermitian(A)
sqrtHermA = sqrt(Hermitian(A))
return ishermitian(sqrtHermA) ? copytri!(parent(sqrtHermA), 'U', true) : parent(sqrtHermA)
Expand Down Expand Up @@ -1035,7 +1039,9 @@ true
"""
function cbrt(A::AbstractMatrix{<:Real})
if checksquare(A) == 0
return copy(A)
return copy(float(A))
elseif isdiag(A)
return applydiagonal(cbrt, A)
elseif issymmetric(A)
return cbrt(Symmetric(A, :U))
else
Expand Down
16 changes: 16 additions & 0 deletions test/dense.jl
Original file line number Diff line number Diff line change
Expand Up @@ -814,6 +814,7 @@ end

A13 = convert(Matrix{elty}, [2 0; 0 2])
@test typeof(log(A13)) == Array{elty, 2}
@test exp(log(A13)) ≈ log(exp(A13)) ≈ A13

T = elty == Float64 ? Symmetric : Hermitian
@test typeof(log(T(A13))) == T{elty, Array{elty, 2}}
Expand Down Expand Up @@ -965,6 +966,10 @@ end
@test typeof(sqrt(A8)) == Matrix{elty}
end
end
@testset "sqrt for diagonal" begin
A = diagm(0 => [1, 2, 3])
@test sqrt(A)^2 ≈ A
end

@testset "issue #40141" begin
x = [-1 -eps() 0 0; eps() -1 0 0; 0 0 -1 -eps(); 0 0 eps() -1]
Expand Down Expand Up @@ -1277,6 +1282,7 @@ end
T = cbrt(Symmetric(S,:U))
@test T*T*T ≈ S
@test eltype(S) == eltype(T)
@test cbrt(Array(Symmetric(S,:U))) == T
# Real valued symmetric
S = (A -> (A+A')/2)(randn(N,N))
T = cbrt(Symmetric(S,:L))
Expand All @@ -1297,6 +1303,16 @@ end
T = cbrt(A)
@test T*T*T ≈ A
@test eltype(A) == eltype(T)
@testset "diagonal" begin
A = diagm(0 => [1, 2, 3])
@test cbrt(A)^3 ≈ A
end
@testset "empty" begin
A = Matrix{Float64}(undef, 0, 0)
@test cbrt(A) == A
A = Matrix{Int}(undef, 0, 0)
@test cbrt(A) isa Matrix{Float64}
end
end

@testset "tr" begin
Expand Down
Loading