Skip to content

Commit

Permalink
build based on 39f4ad9
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Jun 12, 2024

Verified

This commit was signed with the committer’s verified signature.
SHolleworth Sam Holleworth
1 parent 6f1a28e commit 790a9f5
Showing 21 changed files with 67 additions and 67 deletions.
2 changes: 1 addition & 1 deletion dev/.documenter-siteinfo.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-06-07T21:47:18","documenter_version":"1.4.1"}}
{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-06-12T12:28:22","documenter_version":"1.4.1"}}
2 changes: 1 addition & 1 deletion dev/changelog/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/contributing/index.html

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions dev/data/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/examples/Bezier-curves/index.html
Original file line number Diff line number Diff line change
@@ -65,4 +65,4 @@
# 50 | f(x): 2.650064 | |grad f(p)|:0.05536989605165708 | s:0.05306680525691616 | Last Change: 0.081780
# 75 | f(x): 2.649707 | |grad f(p)|:0.02135638585837997 | s:0.01326670131422904 | Last Change: 0.011590
# 100 | f(x): 2.649700 | |grad f(p)|:0.0012887575647752057 | s:0.05306680525691616 | Last Change: 0.001745
The algorithm performed a step with a change (2.9063044690733034e-7) less than 1.0e-5.</code></pre><p>And we can again look at the result</p><p>The result looks as</p><p><img src="../img/bezier/bezier-acceleration-result.png" alt="The resulting curve"/></p><p>where all control points are evenly spaced and we hence have less acceleration as the final cost compared to the initial one indicates. Note that the cost is not zero, since we always have a tradeoff between approximating the initial junctinons (data points) and minimizing the acceleration.</p><div class="citation noncanonical"><dl><dt>[ABBR23]</dt><dd><div>S. D. Axen, M. Baran, R. Bergmann and K. Rzecki. <em>Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds</em>. <a href="https://doi.org/10.1145/3618296">ACM Transactions on Mathematical Software</a> (2023), <a href="https://arxiv.org/abs/2021.08777">arXiv:2021.08777</a>.</div></dd><dt>[BG18]</dt><dd><div>R. Bergmann and P.-Y. Gousenbourger. <em>A variational model for data fitting on manifolds by minimizing the acceleration of a Bézier curve</em>. <a href="https://doi.org/10.3389/fams.2018.00059">Frontiers in Applied Mathematics and Statistics <strong>4</strong></a> (2018), <a href="https://arxiv.org/abs/1807.10090">arXiv:1807.10090</a>.</div></dd><dt>[PN07]</dt><dd><div>T. Popiel and L. Noakes. <em>Bézier curves and <span>$C^2$</span> interpolation in Riemannian manifolds</em>. <a href="https://doi.org/10.1016/j.jat.2007.03.002">Journal of Approximation Theory <strong>148</strong>, 111–127</a> (2007).</div></dd></dl></div></article><nav class="docs-footer"><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.4.1 on <span class="colophon-date" title="Friday 7 June 2024 21:47">Friday 7 June 2024</span>. Using Julia version 1.10.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
The algorithm performed a step with a change (2.9063044690733034e-7) less than 1.0e-5.</code></pre><p>And we can again look at the result</p><p>The result looks as</p><p><img src="../img/bezier/bezier-acceleration-result.png" alt="The resulting curve"/></p><p>where all control points are evenly spaced and we hence have less acceleration as the final cost compared to the initial one indicates. Note that the cost is not zero, since we always have a tradeoff between approximating the initial junctinons (data points) and minimizing the acceleration.</p><div class="citation noncanonical"><dl><dt>[ABBR23]</dt><dd><div>S. D. Axen, M. Baran, R. Bergmann and K. Rzecki. <em>Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds</em>. <a href="https://doi.org/10.1145/3618296">ACM Transactions on Mathematical Software</a> (2023), <a href="https://arxiv.org/abs/2021.08777">arXiv:2021.08777</a>.</div></dd><dt>[BG18]</dt><dd><div>R. Bergmann and P.-Y. Gousenbourger. <em>A variational model for data fitting on manifolds by minimizing the acceleration of a Bézier curve</em>. <a href="https://doi.org/10.3389/fams.2018.00059">Frontiers in Applied Mathematics and Statistics <strong>4</strong></a> (2018), <a href="https://arxiv.org/abs/1807.10090">arXiv:1807.10090</a>.</div></dd><dt>[PN07]</dt><dd><div>T. Popiel and L. Noakes. <em>Bézier curves and <span>$C^2$</span> interpolation in Riemannian manifolds</em>. <a href="https://doi.org/10.1016/j.jat.2007.03.002">Journal of Approximation Theory <strong>148</strong>, 111–127</a> (2007).</div></dd></dl></div></article><nav class="docs-footer"><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.4.1 on <span class="colophon-date" title="Wednesday 12 June 2024 12:28">Wednesday 12 June 2024</span>. Using Julia version 1.10.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
2 changes: 1 addition & 1 deletion dev/examples/Difference-of-Convex-Benchmark/index.html
Original file line number Diff line number Diff line change
@@ -162,4 +162,4 @@
dcppa_iterations[n] = length(dcppa_costs[n])
end</code></pre><p>The iterations are like</p><pre><code class="language-julia hljs">plot(; legend=:bottomright, xlabel=&quot;manifold dimension&quot;, ylabel=&quot;Iterations&quot;)
plot!(dims2, [values(dca_iterations)...]; label=&quot;DCA&quot;, color=indigo, linewidth=2)
plot!(dims2, [values(dcppa_iterations)...]; label=&quot;DCPPA&quot;, color=teal, linewidth=2)</code></pre><p><img src="../Difference-of-Convex-Benchmark_files/figure-commonmark/cell-21-output-1.svg" alt/></p><p>And for the developtment of the cost</p><p><img src="../Difference-of-Convex-Benchmark_files/figure-commonmark/cell-22-output-1.svg" alt/></p><p>where we can see that the DCA needs less iterations than the DCPPA.</p><h2 id="Literature"><a class="docs-heading-anchor" href="#Literature">Literature</a><a id="Literature-1"></a><a class="docs-heading-anchor-permalink" href="#Literature" title="Permalink"></a></h2><div class="citation noncanonical"><dl><dt>[BFSS23]</dt><dd><div>R. Bergmann, O. P. Ferreira, E. M. Santos and J. C. Souza. <em>The difference of convex algorithm on Hadamard manifolds</em>. Preprint (2023), <a href="https://arxiv.org/abs/2112.05250">arXiv:2112.05250</a>.</div></dd><dt>[SO15]</dt><dd><div>J. C. Souza and P. R. Oliveira. <em>A proximal point algorithm for DC fuctions on Hadamard manifolds</em>. <a href="https://doi.org/10.1007/s10898-015-0282-7">Journal of Global Optimization <strong>63</strong>, 797–810</a> (2015).</div></dd></dl></div></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../">« Overview</a><a class="docs-footer-nextpage" href="../Difference-of-Convex-Rosenbrock/">Rosenbrock Metric »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.4.1 on <span class="colophon-date" title="Friday 7 June 2024 21:47">Friday 7 June 2024</span>. Using Julia version 1.10.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
plot!(dims2, [values(dcppa_iterations)...]; label=&quot;DCPPA&quot;, color=teal, linewidth=2)</code></pre><p><img src="../Difference-of-Convex-Benchmark_files/figure-commonmark/cell-21-output-1.svg" alt/></p><p>And for the developtment of the cost</p><p><img src="../Difference-of-Convex-Benchmark_files/figure-commonmark/cell-22-output-1.svg" alt/></p><p>where we can see that the DCA needs less iterations than the DCPPA.</p><h2 id="Literature"><a class="docs-heading-anchor" href="#Literature">Literature</a><a id="Literature-1"></a><a class="docs-heading-anchor-permalink" href="#Literature" title="Permalink"></a></h2><div class="citation noncanonical"><dl><dt>[BFSS23]</dt><dd><div>R. Bergmann, O. P. Ferreira, E. M. Santos and J. C. Souza. <em>The difference of convex algorithm on Hadamard manifolds</em>. Preprint (2023), <a href="https://arxiv.org/abs/2112.05250">arXiv:2112.05250</a>.</div></dd><dt>[SO15]</dt><dd><div>J. C. Souza and P. R. Oliveira. <em>A proximal point algorithm for DC fuctions on Hadamard manifolds</em>. <a href="https://doi.org/10.1007/s10898-015-0282-7">Journal of Global Optimization <strong>63</strong>, 797–810</a> (2015).</div></dd></dl></div></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../">« Overview</a><a class="docs-footer-nextpage" href="../Difference-of-Convex-Rosenbrock/">Rosenbrock Metric »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.4.1 on <span class="colophon-date" title="Wednesday 12 June 2024 12:28">Wednesday 12 June 2024</span>. Using Julia version 1.10.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
2 changes: 1 addition & 1 deletion dev/examples/Difference-of-Convex-Frank-Wolfe/index.html
Original file line number Diff line number Diff line change
@@ -213,4 +213,4 @@
xlims=(1,10^4),
)
plot!(fig, iter1_dc, costs1_dc .- dc_min, color=indigo, label=&quot;Difference of Convex&quot;)
plot!(fig, iter1_fw, costs1_fw .- dc_min, color=teal, label=&quot;Frank-Wolfe&quot;)</code></pre><p><img src="../Difference-of-Convex-Frank-Wolfe_files/figure-commonmark/cell-23-output-1.svg" alt/></p><p>This indicates, that the difference off convex algorithm could even stop earlier with a proper stopping criterion, since after that the cost increases a bit again.</p><p>On the other hand, Frank-Wolfe still has not reached this level function value after <code>10^4</code> iterations.</p><h2 id="Literature"><a class="docs-heading-anchor" href="#Literature">Literature</a><a id="Literature-1"></a><a class="docs-heading-anchor-permalink" href="#Literature" title="Permalink"></a></h2><div class="citation noncanonical"><dl><dt>[BFSS23]</dt><dd><div>R. Bergmann, O. P. Ferreira, E. M. Santos and J. C. Souza. <em>The difference of convex algorithm on Hadamard manifolds</em>. Preprint (2023), <a href="https://arxiv.org/abs/2112.05250">arXiv:2112.05250</a>.</div></dd><dt>[WS22]</dt><dd><div>M. Weber and S. Sra. <em>Riemannian Optimization via Frank-Wolfe Methods</em>. <a href="https://doi.org/10.1007/s10107-022-01840-5">Mathematical Programming <strong>199</strong>, 525–556</a> (2022).</div></dd></dl></div></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../Difference-of-Convex-Rosenbrock/">« Rosenbrock Metric</a><a class="docs-footer-nextpage" href="../HyperparameterOptimization/">Hyperparameter optimziation »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.4.1 on <span class="colophon-date" title="Friday 7 June 2024 21:47">Friday 7 June 2024</span>. Using Julia version 1.10.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
plot!(fig, iter1_fw, costs1_fw .- dc_min, color=teal, label=&quot;Frank-Wolfe&quot;)</code></pre><p><img src="../Difference-of-Convex-Frank-Wolfe_files/figure-commonmark/cell-23-output-1.svg" alt/></p><p>This indicates, that the difference off convex algorithm could even stop earlier with a proper stopping criterion, since after that the cost increases a bit again.</p><p>On the other hand, Frank-Wolfe still has not reached this level function value after <code>10^4</code> iterations.</p><h2 id="Literature"><a class="docs-heading-anchor" href="#Literature">Literature</a><a id="Literature-1"></a><a class="docs-heading-anchor-permalink" href="#Literature" title="Permalink"></a></h2><div class="citation noncanonical"><dl><dt>[BFSS23]</dt><dd><div>R. Bergmann, O. P. Ferreira, E. M. Santos and J. C. Souza. <em>The difference of convex algorithm on Hadamard manifolds</em>. Preprint (2023), <a href="https://arxiv.org/abs/2112.05250">arXiv:2112.05250</a>.</div></dd><dt>[WS22]</dt><dd><div>M. Weber and S. Sra. <em>Riemannian Optimization via Frank-Wolfe Methods</em>. <a href="https://doi.org/10.1007/s10107-022-01840-5">Mathematical Programming <strong>199</strong>, 525–556</a> (2022).</div></dd></dl></div></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../Difference-of-Convex-Rosenbrock/">« Rosenbrock Metric</a><a class="docs-footer-nextpage" href="../HyperparameterOptimization/">Hyperparameter optimziation »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.4.1 on <span class="colophon-date" title="Wednesday 12 June 2024 12:28">Wednesday 12 June 2024</span>. Using Julia version 1.10.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
Loading

0 comments on commit 790a9f5

Please sign in to comment.