Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

some updates for mapreducedim refactor #182

Draft
wants to merge 1 commit into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion ext/SparseArraysExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ end
# This is the function that does the reduction underlying var/std
function centralize_sumabs2!(R::AbstractArray{S}, A::SparseMatrixCSC{Tv,Ti}, means::AbstractArray) where {S,Tv,Ti}
require_one_based_indexing(R, A, means)
lsiz = Base.check_reducedims(R,A)
lsiz = Base._linear_reduction_length(A, axes(R))
for i in 1:max(ndims(R), ndims(means))
if axes(means, i) != axes(R, i)
throw(DimensionMismatch("dimension $i of `mean` should have indices $(axes(R, i)), but got $(axes(means, i))"))
Expand Down
14 changes: 10 additions & 4 deletions src/Statistics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -260,7 +260,7 @@ centralize_sumabs2(A::AbstractArray, m, ifirst::Int, ilast::Int) =

function centralize_sumabs2!(R::AbstractArray{S}, A::AbstractArray, means::AbstractArray) where S
# following the implementation of _mapreducedim! at base/reducedim.jl
lsiz = Base.check_reducedims(R,A)
lsiz = Base._linear_reduction_length(A, axes(R))
for i in 1:max(ndims(R), ndims(means))
if axes(means, i) != axes(R, i)
throw(DimensionMismatch("dimension $i of `mean` should have indices $(axes(R, i)), but got $(axes(means, i))"))
Expand Down Expand Up @@ -339,9 +339,15 @@ over dimensions. In that case, `mean` must be an array with the same shape as
"""
varm(A::AbstractArray, m::AbstractArray; corrected::Bool=true, dims=:) = _varm(A, m, corrected, dims)

_varm(A::AbstractArray{T}, m, corrected::Bool, region) where {T} =
varm!(Base.reducedim_init(t -> abs2(t)/2, +, A, region), A, m; corrected=corrected)

function _varm(A::AbstractArray{T}, m, corrected::Bool, region) where {T}
outaxes = Base.reduced_indices(A, region)
nmT = Base.nonmissingtype(T)
base = typeof(abs2(zero(nmT)) / 2)
elT = (T == nmT) ? base : Union{Missing, base}
R = Base.mapreduce_similar(A, elT, outaxes)
fill!(R, zero(base))
return varm!(R, A, m; corrected=corrected)
end
varm(A::AbstractArray, m; corrected::Bool=true) = _varm(A, m, corrected, :)

function _varm(A::AbstractArray{T}, m, corrected::Bool, ::Colon) where T
Expand Down
15 changes: 9 additions & 6 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -414,6 +414,9 @@ end
end
end

is_missing_or_approx_equals(X, Y) =
all(splat((x,y) -> isequal(x, y) || isapprox(x, y)), zip(X, Y))

function safe_cov(x, y, zm::Bool, cr::Bool)
n = length(x)
if !zm
Expand Down Expand Up @@ -522,9 +525,9 @@ Y = [6.0 2.0;
@testset "cov with missing" begin
@test cov([missing]) === cov([1, missing]) === missing
@test cov([1, missing], [2, 3]) === cov([1, 3], [2, missing]) === missing
@test_throws Exception cov([1 missing; 2 3])
@test_throws Exception cov([1 missing; 2 3], [1, 2])
@test_throws Exception cov([1, 2], [1 missing; 2 3])
@test isequal(cov([1 missing; 2 3]), [0.5 missing; missing missing])
@test isequal(cov([1 missing; 2 3], [1, 2]), [0.5; missing;;])
@test isequal(cov([1, 2], [1 missing; 2 3]), [0.5 missing])
@test isequal(cov([1 2; 2 3], [1, missing]), [missing missing]')
@test isequal(cov([1, missing], [1 2; 2 3]), [missing missing])
end
Expand Down Expand Up @@ -633,9 +636,9 @@ end
@test cor([missing]) === missing
@test cor([1, missing]) == 1
@test cor([1, missing], [2, 3]) === cor([1, 3], [2, missing]) === missing
@test_throws Exception cor([1 missing; 2 3])
@test_throws Exception cor([1 missing; 2 3], [1, 2])
@test_throws Exception cor([1, 2], [1 missing; 2 3])
@test is_missing_or_approx_equals(cor([1 missing; 2 3]), [1 missing; missing 1])
@test is_missing_or_approx_equals(cor([1 missing; 2 3], [1, 2]), [1; missing;;])
@test is_missing_or_approx_equals(cor([1, 2], [1 missing; 2 3]), transpose([1, missing]))
@test isequal(cor([1 2; 2 3], [1, missing]), [missing missing]')
@test isequal(cor([1, missing], [1 2; 2 3]), [missing missing])
end
Expand Down
Loading