Skip to content
/ Kiln Public

The easiest tool for fine-tuning LLM models, synthetic data generation, and collaborating on datasets.

Notifications You must be signed in to change notification settings

Kiln-AI/Kiln

Repository files navigation

Kiln AI Logo

Rapid AI Prototyping and Dataset Collaboration Tool

Fine TuningSynthetic Data GenerationDataset CollaborationDocs

CI Build and Test Format and Lint Desktop Apps Build Web UI Build Test Count Badge Test Coverage Badge Docs
Package PyPI - Version PyPI - Python Version
Meta uv linting - Ruff Hatch project types - Pyright Docs
Apps MacOS Windows Linux

Download button Quick start button

Key Features

  • 🚀 Intuitive Desktop Apps: One-click apps for Windows, MacOS, and Linux. Truly intuitive design.
  • 🎛️ Fine Tuning: Zero-code fine-tuning for Llama, GPT4o, and Mixtral. Automatic serverless deployment of models.
  • 🤖 Synthetic Data Generation: Generate training data with our interactive visual tooling.
  • 🤝 Team Collaboration: Git-based version control for your AI datasets. Intuitive UI makes it easy to collaborate with QA, PM, and subject matter experts on structured data (examples, prompts, ratings, feedback, issues, etc.).
  • 📝 Prompt Generation: Automatically generate prompts from your data, including chain-of-thought, few-shot, and multi-shot, and more.
  • 🌐 Wide Model and Provider Support: Use any model via Ollama, OpenAI, OpenRouter, Fireworks, Groq, AWS, or any OpenAI compatible API.
  • 🧑‍💻 Open-Source Library and API: Our Python library and OpenAPI REST API are MIT open source.
  • 🔒 Privacy-First: We can't see your data. Bring your own API keys or run locally with Ollama.
  • 🗃️ Structured Data: Build AI tasks that speak JSON.
  • 💰 Free: Our apps are free, and our library is open-source.

Download Kiln Desktop Apps

The Kiln desktop app is completely free. Available on MacOS, Windows and Linux.

Download button

Demo

In this demo, I create 9 fine-tuned models (including Llama 3.x, Mixtral, and GPT-4o-mini) in just 18 minutes, achieving great results for less than $6 total cost. See details.

Kiln Preview

Docs & Guides

Kiln is quite intuitive, so we suggest launching the desktop app and diving in. However if you have any questions or want to learn more, our docs are here to help.

For developers, see our Kiln Python Library Docs. These include how to load datasets into Kiln, or using Kiln datasets in your own code-base/notebooks.

Install Python Library

PyPI - Version Docs

Our open-source python library allows you to integrate Kiln datasets into your own workflows, build fine tunes, use Kiln in Notebooks, build custom tools, and much more! Read the docs for examples.

pip install kiln-ai

Learn More

Build High Quality AI Products with Datasets

Products don’t naturally have “datasets”, but Kiln helps you create one.

Every time you use Kiln, we capture the inputs, outputs, human ratings, feedback, and repairs needed to build high quality models for use in your product. The more you use it, the more data you have.

Your model quality improves automatically as the dataset grows, by giving the models more examples of quality content (and mistakes).

If your product goals shift or new bugs are found (as is almost always the case), you can easily iterate the dataset to address issues.

Collaborate Across Technical and Non-Technical Teams

When building AI products, there’s usually a subject matter expert who knows the problem you are trying to solve, and a different technical team assigned to build the model. Kiln bridges that gap as a collaboration tool.

Subject matter experts can use our easy to use desktop apps to generate structured datasets and ratings, without coding or using technical tools. No command line or GPU required.

Data-scientists can consume the dataset created by subject matter experts, using the UI, or deep dive with our python library.

QA and PM can easily identify issues sooner and help generate the dataset content needed to fix the issue at the model layer.

The dataset file format is designed to be be used with Git for powerful collaboration and attribution. Many people can contribute in parallel; collisions are avoided using UUIDs, and attribution is captured inside the dataset files. You can even share a dataset on a shared drive, letting completely non-technical team members contribute data and evals without knowing Git.

Compare Models and Techniques Without Code

There are new models and techniques emerging all the time. Kiln makes it easy to try a variety of approaches, and compare them in a few clicks, without writing code. These can result in higher quality, or improved performance (smaller/cheaper/faster models at the same quality).

Our current beta supports:

  • Various prompting techniques: basic, few-shot, multi-shot, repair & feedback
  • Many models: GPT, Llama, Claude, Gemini, Mistral, Gemma, Phi
  • Chain of thought prompting, with optional custom “thinking” instructions
  • Fine Tuning: create custom models using your Kiln dataset

In the future, we plan to add more powerful no-code options like evals, and RAG. For experienced data-scientists, you can create these techniques today using Kiln datasets and our python library.

Contributing & Development

See CONTRIBUTING.md for information on how to setup a development environment and contribute to Kiln.

Licenses & Trademarks

Copyright 2024 - Chesterfield Laboratories Inc.