Set up the environment
# install Anaconda
https://www.anaconda.com/distribution/
# install PyTorch >= 1.0
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
# intall OpenCV using menpo channel (otherwise the read data could be inaccurate)
conda install -c menpo opencv
# install GOT-10k toolkit
pip install got10k
# install git
different system can use different ways
# install got-10k library
pip install --upgrade got10k
pip install --upgrade git+https://github.com/got-10k/toolkit.git@master
-
Setup the training dataset in
test_and_evaluation/train.py
. Default is the GOT-10k dataset located atDir of your data for GOT-10k
. -
execute test_and_evaluation/train.py
Notice the path is important to make things goes well, follow the comments
-
Setup the tracking dataset in
test_and_evaluation/dEvaluation_test/test.py
. We offer 7 test code for 7 datasets, follow the comments in the code. -
Setup the checkpoint path of your pretrained models. Default is
test_and_evaluation/defaultpretrained/siamfc_alexnet_e1.pth
for original siameseFC. Default istest_and_evaluation/defaultpretrained/CF_param.pth
for original CF_net. -
execute test_and_evaluation/train.py lktest_xxxxx.py
Notice the path is important to make things goes well, follow the comments
-
Check the data for demos. Default path is in
data/demo
, and there are 3 demos. -
Setup the checkpoint path of your pretrained model. Default is
test_and_evaluation/defaultpretrained/siamfc_alexnet_e1.pth
for original siameseFC. Default istest_and_evaluation/defaultpretrained/CF_param.pth
for original CF_net. -
execute the demo1.py and demo2.py, follow the comments in the demo files.
Notice the path is important to make things goes well, follow the comments
All the tracker files are in the siamfc folder.
Besides modify the original codes in the beginning to make the original code run, we create 5 new files, as shown below.
KalmanFilter.py CF_net.py CF_util.py siamfc_Kalman_Correlation.py siamfc_orignialFC.py (this is the modified version of the original code)
We read and understand the their existed work, and create our term-proj
https://github.com/huanglianghua/siamfc-pytorch
https://github.com/got-10k/toolkit
https://github.com/RahmadSadli/2-D-Kalman-Filter
https://github.com/foolwood/DCFNet_pytorch
Luka Bertinetto, Jack Valmadre.Fully Convolutional Siamese Networks for Object Tracking.2015
Shiuh-Ku Weng, Chung-Ming Kuo, Shu-Kang Tu.Video object tracking using adaptive Kalman filter.2006
P. R. Gunjal, B. R. Gunjal, H. A. Shinde, S. M. Vanam and S. S. Aher. Moving Object Tracking Using Kalman Filter. 2018
Vishnu Naresh Boddeti, Vijayakumar Bhagavatula.Advances in correlation filters: vector features, structured prediction and shape alignment.2011
David S. Bolme, J. Ross Beveridge Bruce, A. Draper Yui Man Lui.Visual Object Tracking using Adaptive Correlation Filters.2010
Chenlong Wu, Yue Zhang, Yi Zhang.Motion guided Siamese trackers for visual tracking.2020
Lijun Zhou, Jianlin Zhang.Combined Kalman Filter and Multifeature Fusion Siamese Network for Real-Time Visual Tracking.2019
Wang, Qiang and Gao, Jin and Xing, Junliang and Zhang, Mengdan and Hu, Weiming.DCFNet: Discriminant Correlation Filters Network for Visual Tracking.2017