Skip to content

Linux-cpp-lisp/opt_einsum_fx

Repository files navigation

opt_einsum_fx

Documentation Status

Optimizing einsums and functions involving them using opt_einsum and PyTorch FX compute graphs.

Issues, questions, PRs, and any thoughts about further optimizing these kinds of operations are welcome!

For more information please see the docs.

Installation

PyPI

The latest release can be installed from PyPI:

$ pip install opt_einsum_fx

Source

To get the latest code, run:

$ git clone https://github.com/Linux-cpp-lisp/opt_einsum_fx.git

and install it by running

$ cd opt_einsum_fx/
$ pip install .

You can run the tests with

$ pytest tests/

Minimal example

import torch
import torch.fx
import opt_einsum_fx

def einmatvecmul(a, b, vec):
    """Batched matrix-matrix-vector product using einsum"""
    return torch.einsum("zij,zjk,zk->zi", a, b, vec)

graph_mod = torch.fx.symbolic_trace(einmatvecmul)
print("Original code:\n", graph_mod.code)
graph_opt = opt_einsum_fx.optimize_einsums_full(
    model=graph_mod,
    example_inputs=(
        torch.randn(7, 4, 5),
        torch.randn(7, 5, 3),
        torch.randn(7, 3)
    )
)
print("Optimized code:\n", graph_opt.code)

outputs

Original code:
import torch
def forward(self, a, b, vec):
    einsum_1 = torch.functional.einsum('zij,zjk,zk->zi', a, b, vec);  a = b = vec = None
    return einsum_1

Optimized code:
import torch
def forward(self, a, b, vec):
    einsum_1 = torch.functional.einsum('cb,cab->ca', vec, b);  vec = b = None
    einsum_2 = torch.functional.einsum('cb,cab->ca', einsum_1, a);  einsum_1 = a = None
    return einsum_2

We can measure the performance improvement (this is on a CPU):

from torch.utils.benchmark import Timer

batch = 1000
a, b, vec = torch.randn(batch, 4, 5), torch.randn(batch, 5, 8), torch.randn(batch, 8)

g = {"f": graph_mod, "a": a, "b": b, "vec": vec}
t_orig = Timer("f(a, b, vec)", globals=g)
print(t_orig.timeit(10_000))

g["f"] = graph_opt
t_opt = Timer("f(a, b, vec)", globals=g)
print(t_opt.timeit(10_000))

gives ~2x improvement:

f(a, b, vec)
  276.58 us
  1 measurement, 10000 runs , 1 thread

f(a, b, vec)
  118.84 us
  1 measurement, 10000 runs , 1 thread

Depending on your function and dimensions you may see even larger improvements.

License

opt_einsum_fx is distributed under an MIT license.

About

Einsum optimization using opt_einsum and PyTorch FX graph rewriting

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages