Skip to content

Lukashab/http_anomaly_detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

HTTP Anomaly Detection Classifier

Introduction

The classifier uses HTTP DATASET CSIC 2010 to train the model for detection of malicious HTTP requests. For this purpose, the One Class SVM model is used with "rbf" kernel and appropriate feature extraction methods in order to obtain sufficient results.

Feature extraction

I got inspired by [1] and [2] and chose some of the feature extraction methods mentioned in these papers in order to obtain the best results.

Conclusion

Results

Given HTTP DATASET CSIC 2010, classifier was evaluated as follows:

  • Test Anomalous dataset: precision 94.45%
  • Test Normal dataset: precision 82.71%

Possible improvements

With correctly chosen parameters, classifier showed sufficient results for anomaly detection, however, there is still a lot to improve.
With growing amount of data, SVM model grows with amount of support vectors, which also causes problems in performance. To reduce the time of computation, multilayer perceptron models (ANN) seems like a good option (since their "trained" weights are of fixed size and do not grow with data).

Literature

  1. Althubiti, Sara A.. “Analyzing HTTP requests for web intrusion detection.” (2017).
  2. Epp, Nico & Funk, Ralf & Cappo, Cristian. (2017). Anomaly-based Web Application Firewall using HTTP-specific features and One-Class SVM.

About

SVM classifier for anomaly detection in HTTP requests

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published