Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Compile training loop with Reactant #673

Closed
wants to merge 9 commits into from
Closed

Conversation

avik-pal
Copy link
Member

@avik-pal avik-pal commented Jun 1, 2024

Pulling out training logic from #665, because this is simpler to implement and merge.

Example Usage

We can simply replace AutoEnzyme or any of those backends with AutoReactant and use single_train_step or single_train_step! and every

TODO: Code example

Upstream Needs

TODOs

  • Fallback implementation for existing backends
  • Cleanup the code
  • Updates to ReactantBackend
    • Add option to force return gradients (warn users that this is going to slow down their code) -- We can use caching to probably reduce the penalty for this, but I will do that later.
  • Reactant Backend
    • single_train_step!
    • single_train_step
  • Common Optimisers
    • Descent
    • Adam
  • Add to documentation
    • Highlight how we handle optimisers. Shared parameters won't work for the time being. Once we use full fledged Optimisers.jl that will resume working as usual.
    • Let's create a manual page listing current shortcomings and deviations from the other backends -- 1 example is we don't return the gradient, instead `
  • Testing
    • Common model compile testing
    • inference testing

@avik-pal avik-pal force-pushed the ap/reactant_training branch from 0c35c52 to e52e708 Compare June 1, 2024 17:58
@avik-pal avik-pal added the xla label Jun 1, 2024
Copy link
Contributor

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Benchmark Results

Benchmark suite Current: ceaf4d3 Previous: 2a55829 Ratio
Dense(2 => 2)/cpu/reverse/ReverseDiff (compiled)/(2, 128) 3634.25 ns 3661.875 ns 0.99
Dense(2 => 2)/cpu/reverse/Zygote/(2, 128) 7235.5 ns 7419.8 ns 0.98
Dense(2 => 2)/cpu/reverse/Tracker/(2, 128) 20949 ns 20999 ns 1.00
Dense(2 => 2)/cpu/reverse/ReverseDiff/(2, 128) 9772.4 ns 9738 ns 1.00
Dense(2 => 2)/cpu/reverse/Flux/(2, 128) 8837 ns 9050.8 ns 0.98
Dense(2 => 2)/cpu/reverse/SimpleChains/(2, 128) 4447.125 ns 4475.875 ns 0.99
Dense(2 => 2)/cpu/reverse/Enzyme/(2, 128) 4658.75 ns 4693.875 ns 0.99
Dense(2 => 2)/cpu/forward/NamedTuple/(2, 128) 1110.8733333333332 ns 1112.656050955414 ns 1.00
Dense(2 => 2)/cpu/forward/ComponentArray/(2, 128) 1188.320610687023 ns 1169.8661971830986 ns 1.02
Dense(2 => 2)/cpu/forward/Flux/(2, 128) 1789.6296296296296 ns 1777.3272727272727 ns 1.01
Dense(2 => 2)/cpu/forward/SimpleChains/(2, 128) 179.2549019607843 ns 179.5702364394993 ns 1.00
Dense(20 => 20)/cpu/reverse/ReverseDiff (compiled)/(20, 128) 17392 ns 17302 ns 1.01
Dense(20 => 20)/cpu/reverse/Zygote/(20, 128) 16862 ns 17032 ns 0.99
Dense(20 => 20)/cpu/reverse/Tracker/(20, 128) 37139 ns 37040 ns 1.00
Dense(20 => 20)/cpu/reverse/ReverseDiff/(20, 128) 29205 ns 29184 ns 1.00
Dense(20 => 20)/cpu/reverse/Flux/(20, 128) 21390 ns 21551 ns 0.99
Dense(20 => 20)/cpu/reverse/SimpleChains/(20, 128) 17222 ns 17293 ns 1.00
Dense(20 => 20)/cpu/reverse/Enzyme/(20, 128) 25437 ns 25498 ns 1.00
Dense(20 => 20)/cpu/forward/NamedTuple/(20, 128) 3844.625 ns 3844.75 ns 1.00
Dense(20 => 20)/cpu/forward/ComponentArray/(20, 128) 3952.375 ns 3933.5 ns 1.00
Dense(20 => 20)/cpu/forward/Flux/(20, 128) 4834.857142857143 ns 4952.142857142857 ns 0.98
Dense(20 => 20)/cpu/forward/SimpleChains/(20, 128) 1656 ns 1654.1 ns 1.00
Conv((3, 3), 3 => 3)/cpu/reverse/ReverseDiff (compiled)/(64, 64, 3, 128) 40070662 ns 50721668.5 ns 0.79
Conv((3, 3), 3 => 3)/cpu/reverse/Zygote/(64, 64, 3, 128) 58285994 ns 58546553 ns 1.00
Conv((3, 3), 3 => 3)/cpu/reverse/Tracker/(64, 64, 3, 128) 82358150 ns 101678849 ns 0.81
Conv((3, 3), 3 => 3)/cpu/reverse/ReverseDiff/(64, 64, 3, 128) 81107120 ns 101190618 ns 0.80
Conv((3, 3), 3 => 3)/cpu/reverse/Flux/(64, 64, 3, 128) 78168071 ns 78796997 ns 0.99
Conv((3, 3), 3 => 3)/cpu/reverse/SimpleChains/(64, 64, 3, 128) 11628216.5 ns 12343077 ns 0.94
Conv((3, 3), 3 => 3)/cpu/reverse/Enzyme/(64, 64, 3, 128) 91647252 ns 92604699 ns 0.99
Conv((3, 3), 3 => 3)/cpu/forward/NamedTuple/(64, 64, 3, 128) 7672283.5 ns 7675430 ns 1.00
Conv((3, 3), 3 => 3)/cpu/forward/ComponentArray/(64, 64, 3, 128) 7611777 ns 7608555 ns 1.00
Conv((3, 3), 3 => 3)/cpu/forward/Flux/(64, 64, 3, 128) 11686366 ns 12512726 ns 0.93
Conv((3, 3), 3 => 3)/cpu/forward/SimpleChains/(64, 64, 3, 128) 6385580 ns 6420844 ns 0.99
vgg16/cpu/reverse/Zygote/(32, 32, 3, 16) 693526419 ns 698316993 ns 0.99
vgg16/cpu/reverse/Zygote/(32, 32, 3, 64) 2584030394 ns 2576787594 ns 1.00
vgg16/cpu/reverse/Zygote/(32, 32, 3, 2) 144300903.5 ns 141986062.5 ns 1.02
vgg16/cpu/reverse/Tracker/(32, 32, 3, 16) 791406151 ns 893749885.5 ns 0.89
vgg16/cpu/reverse/Tracker/(32, 32, 3, 64) 3067094223 ns 3362911269 ns 0.91
vgg16/cpu/reverse/Tracker/(32, 32, 3, 2) 221829171 ns 207659968 ns 1.07
vgg16/cpu/reverse/Flux/(32, 32, 3, 16) 787350317.5 ns 857934198 ns 0.92
vgg16/cpu/reverse/Flux/(32, 32, 3, 64) 2609668860 ns 2864984030 ns 0.91
vgg16/cpu/reverse/Flux/(32, 32, 3, 2) 127890003 ns 149742910 ns 0.85
vgg16/cpu/forward/NamedTuple/(32, 32, 3, 16) 176812287 ns 177136415.5 ns 1.00
vgg16/cpu/forward/NamedTuple/(32, 32, 3, 64) 662011151 ns 662230879 ns 1.00
vgg16/cpu/forward/NamedTuple/(32, 32, 3, 2) 34877100 ns 36459877 ns 0.96
vgg16/cpu/forward/ComponentArray/(32, 32, 3, 16) 167010500 ns 167990874.5 ns 0.99
vgg16/cpu/forward/ComponentArray/(32, 32, 3, 64) 652562919 ns 655057499 ns 1.00
vgg16/cpu/forward/ComponentArray/(32, 32, 3, 2) 30473235.5 ns 35749851 ns 0.85
vgg16/cpu/forward/Flux/(32, 32, 3, 16) 213466842 ns 228962990.5 ns 0.93
vgg16/cpu/forward/Flux/(32, 32, 3, 64) 762734758 ns 847928462 ns 0.90
vgg16/cpu/forward/Flux/(32, 32, 3, 2) 40460078.5 ns 37808714 ns 1.07
Conv((3, 3), 64 => 64)/cpu/reverse/ReverseDiff (compiled)/(64, 64, 64, 128) 1261696884.5 ns 1328888452 ns 0.95
Conv((3, 3), 64 => 64)/cpu/reverse/Zygote/(64, 64, 64, 128) 1875037129.5 ns 1883995892 ns 1.00
Conv((3, 3), 64 => 64)/cpu/reverse/Tracker/(64, 64, 64, 128) 2276188576 ns 2418351457 ns 0.94
Conv((3, 3), 64 => 64)/cpu/reverse/ReverseDiff/(64, 64, 64, 128) 2418092871 ns 2440238931 ns 0.99
Conv((3, 3), 64 => 64)/cpu/reverse/Flux/(64, 64, 64, 128) 1896459269.5 ns 1948384572 ns 0.97
Conv((3, 3), 64 => 64)/cpu/reverse/Enzyme/(64, 64, 64, 128) 2060237643 ns 2084376262 ns 0.99
Conv((3, 3), 64 => 64)/cpu/forward/NamedTuple/(64, 64, 64, 128) 339686792 ns 336503625 ns 1.01
Conv((3, 3), 64 => 64)/cpu/forward/ComponentArray/(64, 64, 64, 128) 331852824 ns 336582406 ns 0.99
Conv((3, 3), 64 => 64)/cpu/forward/Flux/(64, 64, 64, 128) 405068534 ns 456801176 ns 0.89
Conv((3, 3), 1 => 1)/cpu/reverse/ReverseDiff (compiled)/(64, 64, 1, 128) 11937972 ns 11858627 ns 1.01
Conv((3, 3), 1 => 1)/cpu/reverse/Zygote/(64, 64, 1, 128) 18066755.5 ns 18114833 ns 1.00
Conv((3, 3), 1 => 1)/cpu/reverse/Tracker/(64, 64, 1, 128) 19171977 ns 19305583 ns 0.99
Conv((3, 3), 1 => 1)/cpu/reverse/ReverseDiff/(64, 64, 1, 128) 23806904 ns 24143369.5 ns 0.99
Conv((3, 3), 1 => 1)/cpu/reverse/Flux/(64, 64, 1, 128) 17821618 ns 17990331 ns 0.99
Conv((3, 3), 1 => 1)/cpu/reverse/SimpleChains/(64, 64, 1, 128) 1158131 ns 1181481.5 ns 0.98
Conv((3, 3), 1 => 1)/cpu/reverse/Enzyme/(64, 64, 1, 128) 23016860 ns 23281651.5 ns 0.99
Conv((3, 3), 1 => 1)/cpu/forward/NamedTuple/(64, 64, 1, 128) 2282789 ns 2329001 ns 0.98
Conv((3, 3), 1 => 1)/cpu/forward/ComponentArray/(64, 64, 1, 128) 2206837 ns 2259670 ns 0.98
Conv((3, 3), 1 => 1)/cpu/forward/Flux/(64, 64, 1, 128) 2070232 ns 2106879 ns 0.98
Conv((3, 3), 1 => 1)/cpu/forward/SimpleChains/(64, 64, 1, 128) 199262 ns 216514 ns 0.92
Dense(200 => 200)/cpu/reverse/ReverseDiff (compiled)/(200, 128) 291294 ns 295862 ns 0.98
Dense(200 => 200)/cpu/reverse/Zygote/(200, 128) 265065 ns 269132.5 ns 0.98
Dense(200 => 200)/cpu/reverse/Tracker/(200, 128) 367124 ns 370853 ns 0.99
Dense(200 => 200)/cpu/reverse/ReverseDiff/(200, 128) 409343.5 ns 416127 ns 0.98
Dense(200 => 200)/cpu/reverse/Flux/(200, 128) 273731 ns 278089 ns 0.98
Dense(200 => 200)/cpu/reverse/SimpleChains/(200, 128) 405005 ns 409124 ns 0.99
Dense(200 => 200)/cpu/reverse/Enzyme/(200, 128) 393324 ns 399266 ns 0.99
Dense(200 => 200)/cpu/forward/NamedTuple/(200, 128) 80921 ns 84137 ns 0.96
Dense(200 => 200)/cpu/forward/ComponentArray/(200, 128) 82213.5 ns 86591 ns 0.95
Dense(200 => 200)/cpu/forward/Flux/(200, 128) 86782 ns 87734 ns 0.99
Dense(200 => 200)/cpu/forward/SimpleChains/(200, 128) 104335 ns 104285 ns 1.00
Conv((3, 3), 16 => 16)/cpu/reverse/ReverseDiff (compiled)/(64, 64, 16, 128) 199086726 ns 196679056 ns 1.01
Conv((3, 3), 16 => 16)/cpu/reverse/Zygote/(64, 64, 16, 128) 329556427 ns 331090526 ns 1.00
Conv((3, 3), 16 => 16)/cpu/reverse/Tracker/(64, 64, 16, 128) 417942847.5 ns 446330080.5 ns 0.94
Conv((3, 3), 16 => 16)/cpu/reverse/ReverseDiff/(64, 64, 16, 128) 438080100.5 ns 501425011 ns 0.87
Conv((3, 3), 16 => 16)/cpu/reverse/Flux/(64, 64, 16, 128) 387166012 ns 419437580.5 ns 0.92
Conv((3, 3), 16 => 16)/cpu/reverse/SimpleChains/(64, 64, 16, 128) 320184207 ns 346091233 ns 0.93
Conv((3, 3), 16 => 16)/cpu/reverse/Enzyme/(64, 64, 16, 128) 472105455.5 ns 483112933.5 ns 0.98
Conv((3, 3), 16 => 16)/cpu/forward/NamedTuple/(64, 64, 16, 128) 47204961 ns 47755090 ns 0.99
Conv((3, 3), 16 => 16)/cpu/forward/ComponentArray/(64, 64, 16, 128) 46703341 ns 47275593 ns 0.99
Conv((3, 3), 16 => 16)/cpu/forward/Flux/(64, 64, 16, 128) 52498749.5 ns 57880765 ns 0.91
Conv((3, 3), 16 => 16)/cpu/forward/SimpleChains/(64, 64, 16, 128) 27950628.5 ns 28154162.5 ns 0.99
Dense(2000 => 2000)/cpu/reverse/ReverseDiff (compiled)/(2000, 128) 18942323.5 ns 19633406 ns 0.96
Dense(2000 => 2000)/cpu/reverse/Zygote/(2000, 128) 19627356 ns 19863886 ns 0.99
Dense(2000 => 2000)/cpu/reverse/Tracker/(2000, 128) 23670610 ns 23978995 ns 0.99
Dense(2000 => 2000)/cpu/reverse/ReverseDiff/(2000, 128) 24290902.5 ns 24483866 ns 0.99
Dense(2000 => 2000)/cpu/reverse/Flux/(2000, 128) 19726361.5 ns 19853090.5 ns 0.99
Dense(2000 => 2000)/cpu/reverse/Enzyme/(2000, 128) 21131087 ns 21211617 ns 1.00
Dense(2000 => 2000)/cpu/forward/NamedTuple/(2000, 128) 6616113.5 ns 6587852 ns 1.00
Dense(2000 => 2000)/cpu/forward/ComponentArray/(2000, 128) 6562468 ns 6555306 ns 1.00
Dense(2000 => 2000)/cpu/forward/Flux/(2000, 128) 6579424 ns 6543112 ns 1.01

This comment was automatically generated by workflow using github-action-benchmark.

@avik-pal

This comment was marked as outdated.

@avik-pal avik-pal marked this pull request as draft June 1, 2024 21:21
@avik-pal avik-pal force-pushed the main branch 2 times, most recently from 7d90e08 to db8fc3d Compare June 16, 2024 01:59
@avik-pal avik-pal force-pushed the ap/reactant_training branch from 2e2b6b6 to be504a3 Compare June 16, 2024 02:01
@avik-pal avik-pal force-pushed the main branch 2 times, most recently from d661097 to 25325ea Compare June 16, 2024 02:07
Copy link

codecov bot commented Jun 16, 2024

Codecov Report

Attention: Patch coverage is 2.12766% with 46 lines in your changes missing coverage. Please review.

Project coverage is 93.61%. Comparing base (2a55829) to head (ceaf4d3).

Files Patch % Lines
ext/LuxReactantExt/training.jl 0.00% 30 Missing ⚠️
ext/LuxReactantExt/utils.jl 0.00% 9 Missing ⚠️
src/helpers/simple_optimizers.jl 0.00% 6 Missing ⚠️
src/helpers/training.jl 0.00% 1 Missing ⚠️
Additional details and impacted files
@@            Coverage Diff             @@
##             main     #673      +/-   ##
==========================================
- Coverage   96.13%   93.61%   -2.52%     
==========================================
  Files          54       58       +4     
  Lines        2818     2868      +50     
==========================================
- Hits         2709     2685      -24     
- Misses        109      183      +74     

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

@avik-pal

This comment was marked as outdated.

@avik-pal avik-pal force-pushed the ap/reactant_training branch 2 times, most recently from 1311b31 to 88a3742 Compare June 22, 2024 18:02
@avik-pal

This comment was marked as outdated.

@wsmoses

This comment was marked as outdated.

@avik-pal

This comment was marked as outdated.

@avik-pal avik-pal force-pushed the ap/reactant_training branch from 88a3742 to 982c67d Compare June 22, 2024 19:06
@wsmoses
Copy link
Contributor

wsmoses commented Jun 23, 2024

@avik-pal that should now be fixed

@avik-pal
Copy link
Member Author

Can confirm this works, now I need to finish the wrapper. Once it is merged, it should be easy to get a list of all the models that don't work.

@avik-pal
Copy link
Member Author

Ooof Optimisers is going to be a bit of a pain, it seems to do a lot of operations (not sure why):

  1. Operations with ZeroTangent on gradients
  2. Some Float32 broadcasting on the array

@avik-pal avik-pal force-pushed the ap/reactant_training branch from 982c67d to 9ecca42 Compare June 23, 2024 02:54
@wsmoses
Copy link
Contributor

wsmoses commented Jun 23, 2024

I mean we can quickly try to add overloads if you have relevant backtraces?

@avik-pal
Copy link
Member Author

Here is one which was simple

using ChainRulesCore

Base.:+(a::Reactant.TracedRArray, ::AbstractZero) = a

The other one:

julia> Lux.Experimental.single_train_step(AutoReactant(), loss_fn, data, ts)
ERROR: MethodError: no method matching elem_apply(::Type{Float32}, ::Reactant.TracedRArray{Float32, (5, 10), 2})

Closest candidates are:
  elem_apply(::typeof(*), ::Reactant.TracedRArray{ElType, Shape, N}, ::Reactant.TracedRArray{ElType, Shape, N}) where {ElType, Shape, N}
   @ Reactant ~/.julia/packages/Reactant/LF3m2/src/overloads.jl:470
  elem_apply(::typeof(*), ::Any, ::Reactant.TracedRArray{ElType, Shape, N}) where {ElType, Shape, N}
   @ Reactant ~/.julia/packages/Reactant/LF3m2/src/overloads.jl:495
  elem_apply(::typeof(*), ::Reactant.TracedRArray{ElType, Shape, N}, ::Any) where {ElType, Shape, N}
   @ Reactant ~/.julia/packages/Reactant/LF3m2/src/overloads.jl:483
  ...

Stacktrace:
  [1] _copyto!(dest::Reactant.TracedRArray{Float32, (5, 10), 2}, bc::Base.Broadcast.Broadcasted{Nothing, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}, Type{Float32}, Tuple{Base.Broadcast.Broadcasted{Reactant.AbstractReactantArrayStyle{}, Nothing, typeof(-), Tuple{}}}})
    @ Reactant ~/.julia/packages/Reactant/LF3m2/src/overloads.jl:832
  [2] copyto!
    @ ~/.julia/packages/Reactant/LF3m2/src/overloads.jl:750 [inlined]
  [3] copyto!
    @ ./broadcast.jl:956 [inlined]
  [4] copy
    @ ~/.julia/packages/Reactant/LF3m2/src/overloads.jl:740 [inlined]
  [5] overdub(context::Cassette.Context{Reactant.var"##TraceCtx#Name", Nothing, Nothing, Cassette.var"##PassType#235", Nothing, Nothing}, f::typeof(copy), args::Base.Broadcast.Broadcasted{Reactant.AbstractReactantArrayStyle{…}, Tuple{…}, Type{…}, Tuple{…}})
    @ Reactant ~/.julia/packages/Reactant/LF3m2/src/overloads.jl:627
  [6] materialize(::Base.Broadcast.Broadcasted{Reactant.AbstractReactantArrayStyle{2}, Nothing, Type{Float32}, Tuple{Base.Broadcast.Broadcasted{Reactant.AbstractReactantArrayStyle{2}, Nothing, typeof(-), Tuple{Reactant.TracedRArray{Float32, (5, 10), 2}, Base.Broadcast.Broadcasted{Reactant.AbstractReactantArrayStyle{2}, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}, typeof(*), Tuple{Reactant.TracedRArray{Float32, (5, 10), 2}, Float32}}}}}})
    @ ./broadcast.jl:903 [inlined]
  [7] materialize
    @ ./broadcast.jl:903 [inlined]
  [8] subtract!(::Reactant.TracedRArray{Float32, (5, 10), 2}, ::Base.Broadcast.Broadcasted{Reactant.AbstractReactantArrayStyle{2}, Tuple{Base.OneTo{Int64}, Base.OneTo{Int64}}, typeof(*), Tuple{Reactant.TracedRArray{Float32, (5, 10), 2}, Float32}})
    @ ~/.julia/packages/Optimisers/yDIWk/src/interface.jl:103 [inlined]
  [9] subtract!
    @ ~/.julia/packages/Optimisers/yDIWk/src/interface.jl:103 [inlined]

That should also just be a noop probably

@wsmoses
Copy link
Contributor

wsmoses commented Jun 23, 2024

Yeah -- or more specifically we have it call convert [and that will get compiled to a noop]

end

function __update_fn_wrapper(obj_fn, model, ps, dps, st, st_opt, data)
_, (loss, st_, stats) = Enzyme.autodiff(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Minor, but this is going to be more efficient if dps is defined within the function and doesn't escape the scope.

Similarly it would be more efficient to have this do ps .= ps_ and not have to return the second allocation

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In other words all temporaries/allocations that cross the compiled function boundaries need to be materialized, but all variables defined only within can be optimized out

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do you why I am able to return a loss, st_, stats here without enzyme complaining that I specified the return type as Active?

In other words all temporaries/allocations that cross the compiled function boundaries need to be materialized, but all variables defined only within can be optimized out

Makes sense I will do that.

@wsmoses
Copy link
Contributor

wsmoses commented Jun 23, 2024

@avik-pal here's your fix for the above: EnzymeAD/Reactant.jl#25

@wsmoses
Copy link
Contributor

wsmoses commented Jul 14, 2024

@avik-pal we just released a version with better broadcast, so I'm now curious if the earlier things you did to work around that can be removed?

@avik-pal
Copy link
Member Author

@avik-pal we just released a version with better broadcast, so I'm now curious if the earlier things you did to work around that can be removed?

In the example, I just used a hacky loss function without the operations that reactant did not support. Let me try with a proper loss now

@wsmoses
Copy link
Contributor

wsmoses commented Jul 14, 2024 via email

@avik-pal avik-pal force-pushed the ap/reactant_training branch 5 times, most recently from 48bb523 to 434a744 Compare July 20, 2024 04:37
@avik-pal avik-pal force-pushed the ap/reactant_training branch 4 times, most recently from bd24029 to ceaf4d3 Compare July 26, 2024 23:12
@avik-pal avik-pal removed this from the v1.0 milestone Sep 1, 2024
@wsmoses
Copy link
Contributor

wsmoses commented Sep 6, 2024

@avik-pal with things released [and cuda functional], anything blocking here?

@avik-pal
Copy link
Member Author

avik-pal commented Sep 6, 2024

No this is mostly functional, I will have to do a rebase once the other PR lands.

@avik-pal avik-pal force-pushed the ap/reactant_training branch from ceaf4d3 to c47a9d0 Compare September 15, 2024 02:44
@avik-pal
Copy link
Member Author

avik-pal commented Oct 4, 2024

superceded by #969

@avik-pal avik-pal closed this Oct 4, 2024
@avik-pal avik-pal deleted the ap/reactant_training branch November 5, 2024 13:17
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants