Skip to content

Commit

Permalink
deploy: b47ed65
Browse files Browse the repository at this point in the history
  • Loading branch information
github-actions committed Nov 8, 2023
1 parent 62c2fea commit 966d8e9
Show file tree
Hide file tree
Showing 7 changed files with 42 additions and 42 deletions.
Binary file modified .doctrees/encore/similarity.doctree
Binary file not shown.
Binary file modified .doctrees/environment.pickle
Binary file not shown.
Binary file modified .doctrees/index.doctree
Binary file not shown.
30 changes: 15 additions & 15 deletions _modules/mdaencore/similarity.html
Original file line number Diff line number Diff line change
Expand Up @@ -138,11 +138,11 @@ <h1>Source code for mdaencore.similarity</h1><div class="highlight"><pre>
<span class="sd">described in :footcite:p:`Tiberti2015`.</span>

<span class="sd">The module includes facilities for handling ensembles and trajectories through</span>
<span class="sd">the :class:`Universe` class, performing clustering or dimensionality reduction</span>
<span class="sd">of the ensemble space, estimating multivariate probability distributions from</span>
<span class="sd">the input data, and more. ENCORE can be used to compare experimental and</span>
<span class="sd">simulation-derived ensembles, as well as estimate the convergence of</span>
<span class="sd">trajectories from time-dependent simulations.</span>
<span class="sd">the :class:`~MDAnalysis.core.universe.Universe` class, performing clustering</span>
<span class="sd">or dimensionality reduction of the ensemble space, estimating multivariate</span>
<span class="sd">probability distributions from the input data, and more. ENCORE can be used to</span>
<span class="sd">compare experimental and simulation-derived ensembles, as well as estimate the</span>
<span class="sd">convergence of trajectories from time-dependent simulations.</span>

<span class="sd">ENCORE includes three different methods for calculations of similarity measures</span>
<span class="sd">between ensembles implemented in individual functions:</span>
Expand Down Expand Up @@ -1188,13 +1188,13 @@ <h1>Source code for mdaencore.similarity</h1><div class="highlight"><pre>
<span class="sd"> --------</span>
<span class="sd"> To calculate the Clustering Ensemble similarity, two ensembles are</span>
<span class="sd"> created as Universe object using a topology file and two trajectories. The</span>
<span class="sd"> topology- and trajectory files used are obtained from the MDAnalysis</span>
<span class="sd"> test suite for two different simulations of the protein AdK.</span>
<span class="sd"> To use a different clustering method, set the parameter clustering_method</span>
<span class="sd"> (Note that the sklearn module must be installed). Likewise, different parameters</span>
<span class="sd"> for the same clustering method can be explored by adding different</span>
<span class="sd"> instances of the same clustering class.</span>
<span class="sd"> Here the simplest case of just two instances of :class:`Universe` is illustrated:</span>
<span class="sd"> topology- and trajectory files used are obtained from the MDAnalysis test</span>
<span class="sd"> suite for two different simulations of the protein AdK. To use a different</span>
<span class="sd"> clustering method, set the parameter clustering_method (Note that the</span>
<span class="sd"> sklearn module must be installed). Likewise, different parameters for the</span>
<span class="sd"> same clustering method can be explored by adding different instances of</span>
<span class="sd"> the same clustering class. Here the simplest case of just two instances</span>
<span class="sd"> of :class:`~MDAnalysis.core.universe.Universe` is illustrated:</span>

<span class="sd"> &gt;&gt;&gt; from MDAnalysis import Universe</span>
<span class="sd"> &gt;&gt;&gt; import mdaencore as encore</span>
Expand Down Expand Up @@ -1471,8 +1471,8 @@ <h1>Source code for mdaencore.similarity</h1><div class="highlight"><pre>
<span class="sd"> To use a different dimensional reduction methods, simply set the</span>
<span class="sd"> parameter dimensionality_reduction_method. Likewise, different parameters</span>
<span class="sd"> for the same clustering method can be explored by adding different</span>
<span class="sd"> instances of the same method class.</span>
<span class="sd"> Here the simplest case of comparing just two instances of :class:`Universe` is</span>
<span class="sd"> instances of the same method class. Here the simplest case of comparing</span>
<span class="sd"> just two instances of :class:`~MDAnalysis.core.universe.Universe` is</span>
<span class="sd"> illustrated:</span>

<span class="sd"> &gt;&gt;&gt; from MDAnalysis import Universe</span>
Expand All @@ -1487,7 +1487,7 @@ <h1>Source code for mdaencore.similarity</h1><div class="highlight"><pre>

<span class="sd"> In addition to the quantitative similarity estimate, the dimensional</span>
<span class="sd"> reduction can easily be visualized, see the ``Example`` section in</span>
<span class="sd"> :mod:`mdaencore.dimensionality_reduction.reduce_dimensionality``</span>
<span class="sd"> :mod:`mdaencore.dimensionality_reduction.reduce_dimensionality`</span>

<span class="sd"> &quot;&quot;&quot;</span>

Expand Down
2 changes: 1 addition & 1 deletion _sources/index.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ ensembles described in :footcite:p:`LindorffLarsen2009`. The implementation and
are described in :footcite:p:`Tiberti2015`.

The module includes facilities for handling ensembles and trajectories through
the :class:`Universe` class, performing clustering or dimensionality reduction
the :class:`~MDAnalysis.core.universe.Universe` class, performing clustering or dimensionality reduction
of the ensemble space, estimating multivariate probability distributions from
the input data, and more. ENCORE can be used to compare experimental and
simulation-derived ensembles, as well as estimate the convergence of
Expand Down
50 changes: 25 additions & 25 deletions encore/similarity.html
Original file line number Diff line number Diff line change
Expand Up @@ -151,11 +151,11 @@
The implementation and examples are also further
described in <a class="footnote-reference brackets" href="#footcite-tiberti2015" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a>.</p>
<p>The module includes facilities for handling ensembles and trajectories through
the <code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code> class, performing clustering or dimensionality reduction
of the ensemble space, estimating multivariate probability distributions from
the input data, and more. ENCORE can be used to compare experimental and
simulation-derived ensembles, as well as estimate the convergence of
trajectories from time-dependent simulations.</p>
the <a class="reference external" href="https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe" title="(in MDAnalysis v2.6.1)"><code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code></a> class, performing clustering
or dimensionality reduction of the ensemble space, estimating multivariate
probability distributions from the input data, and more. ENCORE can be used to
compare experimental and simulation-derived ensembles, as well as estimate the
convergence of trajectories from time-dependent simulations.</p>
<p>ENCORE includes three different methods for calculations of similarity measures
between ensembles implemented in individual functions:</p>
<ul class="simple">
Expand Down Expand Up @@ -414,13 +414,13 @@ <h2>Functions for ensemble comparisons<a class="headerlink" href="#functions-for
<p class="rubric">Examples</p>
<p>To calculate the Clustering Ensemble similarity, two ensembles are
created as Universe object using a topology file and two trajectories. The
topology- and trajectory files used are obtained from the MDAnalysis
test suite for two different simulations of the protein AdK.
To use a different clustering method, set the parameter clustering_method
(Note that the sklearn module must be installed). Likewise, different parameters
for the same clustering method can be explored by adding different
instances of the same clustering class.
Here the simplest case of just two instances of <code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code> is illustrated:</p>
topology- and trajectory files used are obtained from the MDAnalysis test
suite for two different simulations of the protein AdK. To use a different
clustering method, set the parameter clustering_method (Note that the
sklearn module must be installed). Likewise, different parameters for the
same clustering method can be explored by adding different instances of
the same clustering class. Here the simplest case of just two instances
of <a class="reference external" href="https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe" title="(in MDAnalysis v2.6.1)"><code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code></a> is illustrated:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">MDAnalysis</span> <span class="kn">import</span> <span class="n">Universe</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">mdaencore</span> <span class="k">as</span> <span class="nn">encore</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">MDAnalysis.tests.datafiles</span> <span class="kn">import</span> <span class="n">PSF</span><span class="p">,</span> <span class="n">DCD</span><span class="p">,</span> <span class="n">DCD2</span>
Expand Down Expand Up @@ -521,8 +521,8 @@ <h2>Functions for ensemble comparisons<a class="headerlink" href="#functions-for
To use a different dimensional reduction methods, simply set the
parameter dimensionality_reduction_method. Likewise, different parameters
for the same clustering method can be explored by adding different
instances of the same method class.
Here the simplest case of comparing just two instances of <code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code> is
instances of the same method class. Here the simplest case of comparing
just two instances of <a class="reference external" href="https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe" title="(in MDAnalysis v2.6.1)"><code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code></a> is
illustrated:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">MDAnalysis</span> <span class="kn">import</span> <span class="n">Universe</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">mdaencore</span> <span class="k">as</span> <span class="nn">encore</span>
Expand All @@ -537,7 +537,7 @@ <h2>Functions for ensemble comparisons<a class="headerlink" href="#functions-for
</div>
<p>In addition to the quantitative similarity estimate, the dimensional
reduction can easily be visualized, see the <code class="docutils literal notranslate"><span class="pre">Example</span></code> section in
<code class="xref py py-mod docutils literal notranslate"><span class="pre">mdaencore.dimensionality_reduction.reduce_dimensionality`</span></code></p>
<a class="reference internal" href="dimensionality_reduction.html#module-mdaencore.dimensionality_reduction.reduce_dimensionality" title="mdaencore.dimensionality_reduction.reduce_dimensionality"><code class="xref py py-mod docutils literal notranslate"><span class="pre">mdaencore.dimensionality_reduction.reduce_dimensionality</span></code></a></p>
</dd></dl>

</section>
Expand Down Expand Up @@ -622,13 +622,13 @@ <h2>Function reference<a class="headerlink" href="#function-reference" title="Li
<p class="rubric">Examples</p>
<p>To calculate the Clustering Ensemble similarity, two ensembles are
created as Universe object using a topology file and two trajectories. The
topology- and trajectory files used are obtained from the MDAnalysis
test suite for two different simulations of the protein AdK.
To use a different clustering method, set the parameter clustering_method
(Note that the sklearn module must be installed). Likewise, different parameters
for the same clustering method can be explored by adding different
instances of the same clustering class.
Here the simplest case of just two instances of <code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code> is illustrated:</p>
topology- and trajectory files used are obtained from the MDAnalysis test
suite for two different simulations of the protein AdK. To use a different
clustering method, set the parameter clustering_method (Note that the
sklearn module must be installed). Likewise, different parameters for the
same clustering method can be explored by adding different instances of
the same clustering class. Here the simplest case of just two instances
of <a class="reference external" href="https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe" title="(in MDAnalysis v2.6.1)"><code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code></a> is illustrated:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">MDAnalysis</span> <span class="kn">import</span> <span class="n">Universe</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">mdaencore</span> <span class="k">as</span> <span class="nn">encore</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">MDAnalysis.tests.datafiles</span> <span class="kn">import</span> <span class="n">PSF</span><span class="p">,</span> <span class="n">DCD</span><span class="p">,</span> <span class="n">DCD2</span>
Expand Down Expand Up @@ -976,8 +976,8 @@ <h2>Function reference<a class="headerlink" href="#function-reference" title="Li
To use a different dimensional reduction methods, simply set the
parameter dimensionality_reduction_method. Likewise, different parameters
for the same clustering method can be explored by adding different
instances of the same method class.
Here the simplest case of comparing just two instances of <code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code> is
instances of the same method class. Here the simplest case of comparing
just two instances of <a class="reference external" href="https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe" title="(in MDAnalysis v2.6.1)"><code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code></a> is
illustrated:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">MDAnalysis</span> <span class="kn">import</span> <span class="n">Universe</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">mdaencore</span> <span class="k">as</span> <span class="nn">encore</span>
Expand All @@ -992,7 +992,7 @@ <h2>Function reference<a class="headerlink" href="#function-reference" title="Li
</div>
<p>In addition to the quantitative similarity estimate, the dimensional
reduction can easily be visualized, see the <code class="docutils literal notranslate"><span class="pre">Example</span></code> section in
<code class="xref py py-mod docutils literal notranslate"><span class="pre">mdaencore.dimensionality_reduction.reduce_dimensionality`</span></code></p>
<a class="reference internal" href="dimensionality_reduction.html#module-mdaencore.dimensionality_reduction.reduce_dimensionality" title="mdaencore.dimensionality_reduction.reduce_dimensionality"><code class="xref py py-mod docutils literal notranslate"><span class="pre">mdaencore.dimensionality_reduction.reduce_dimensionality</span></code></a></p>
</dd></dl>

<dl class="py function">
Expand Down
2 changes: 1 addition & 1 deletion index.html
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ <h1>Welcome to mdaencore’s documentation!<a class="headerlink" href="#welcome-
ensembles described in <a class="footnote-reference brackets" href="#footcite-lindorfflarsen2009" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a>. The implementation and examples
are described in <a class="footnote-reference brackets" href="#footcite-tiberti2015" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a>.</p>
<p>The module includes facilities for handling ensembles and trajectories through
the <code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code> class, performing clustering or dimensionality reduction
the <a class="reference external" href="https://docs.mdanalysis.org/stable/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe" title="(in MDAnalysis v2.6.1)"><code class="xref py py-class docutils literal notranslate"><span class="pre">Universe</span></code></a> class, performing clustering or dimensionality reduction
of the ensemble space, estimating multivariate probability distributions from
the input data, and more. ENCORE can be used to compare experimental and
simulation-derived ensembles, as well as estimate the convergence of
Expand Down

0 comments on commit 966d8e9

Please sign in to comment.