-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add Benchmark (pytest) benchmark result for cfdd4a3
- Loading branch information
github-action-benchmark
committed
Sep 9, 2024
1 parent
368c446
commit 32947bf
Showing
1 changed file
with
109 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
window.BENCHMARK_DATA = { | ||
"lastUpdate": 1725402020391, | ||
"lastUpdate": 1725911973416, | ||
"repoUrl": "https://github.com/MPACT-ORG/mpact-compiler", | ||
"entries": { | ||
"Benchmark": [ | ||
|
@@ -2038,6 +2038,114 @@ window.BENCHMARK_DATA = { | |
"extra": "mean: 46.44285873683884 msec\nrounds: 19" | ||
} | ||
] | ||
}, | ||
{ | ||
"commit": { | ||
"author": { | ||
"email": "[email protected]", | ||
"name": "Aart Bik", | ||
"username": "aartbik" | ||
}, | ||
"committer": { | ||
"email": "[email protected]", | ||
"name": "GitHub", | ||
"username": "web-flow" | ||
}, | ||
"distinct": true, | ||
"id": "cfdd4a37016bb7c8478527d37b73e59583951279", | ||
"message": "[mpact][compiler] extract linalg module import into own method (#76)", | ||
"timestamp": "2024-09-09T12:54:14-07:00", | ||
"tree_id": "baf2a271d652cc711304f0b470897078189abb82", | ||
"url": "https://github.com/MPACT-ORG/mpact-compiler/commit/cfdd4a37016bb7c8478527d37b73e59583951279" | ||
}, | ||
"date": 1725911972518, | ||
"tool": "pytest", | ||
"benches": [ | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", | ||
"value": 5984.307610535823, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.000005396728879561781", | ||
"extra": "mean: 167.10370941484106 usec\nrounds: 1965" | ||
}, | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", | ||
"value": 35.213679611399876, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.00034794632331655665", | ||
"extra": "mean: 28.398054705883837 msec\nrounds: 34" | ||
}, | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", | ||
"value": 5844.122925543725, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.00004106105544141608", | ||
"extra": "mean: 171.11207494099077 usec\nrounds: 1708" | ||
}, | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", | ||
"value": 5773.681589720597, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.000036047321598158825", | ||
"extra": "mean: 173.1997139884523 usec\nrounds: 1923" | ||
}, | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", | ||
"value": 853095.7827844535, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.3056037399383262e-7", | ||
"extra": "mean: 1.172201316874478 usec\nrounds: 145497" | ||
}, | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", | ||
"value": 32.92338635808723, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0003340834271926319", | ||
"extra": "mean: 30.373546303032775 msec\nrounds: 33" | ||
}, | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", | ||
"value": 12541.904006539186, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.000004140341102795112", | ||
"extra": "mean: 79.73271039856573 usec\nrounds: 3087" | ||
}, | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", | ||
"value": 19.936657536483768, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0010802672298394177", | ||
"extra": "mean: 50.15885928571606 msec\nrounds: 21" | ||
}, | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", | ||
"value": 195.50824812526918, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0006824320098335556", | ||
"extra": "mean: 5.114873718060549 msec\nrounds: 227" | ||
}, | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", | ||
"value": 190.3127017174977, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.00020254360028272055", | ||
"extra": "mean: 5.254510029942254 msec\nrounds: 167" | ||
}, | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", | ||
"value": 858024.431855418, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.7853983511739526e-7", | ||
"extra": "mean: 1.1654679783856152 usec\nrounds: 159439" | ||
}, | ||
{ | ||
"name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", | ||
"value": 20.887555643635324, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.0031078451677412616", | ||
"extra": "mean: 47.87539610000806 msec\nrounds: 20" | ||
} | ||
] | ||
} | ||
] | ||
} | ||
|