-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #14 from MStarmans91/development
Release 3.0.0
- Loading branch information
Showing
839 changed files
with
163,060 additions
and
5,871 deletions.
There are no files selected for viewing
44 changes: 44 additions & 0 deletions
44
.eggs/PyWavelets-1.0.0-py3.7-linux-x86_64.egg/EGG-INFO/PKG-INFO
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
Metadata-Version: 2.1 | ||
Name: PyWavelets | ||
Version: 1.0.0 | ||
Summary: PyWavelets, wavelet transform module | ||
Home-page: https://github.com/PyWavelets/pywt | ||
Maintainer: The PyWavelets Developers | ||
Maintainer-email: [email protected] | ||
License: MIT | ||
Download-URL: https://github.com/PyWavelets/pywt/releases | ||
Keywords: wavelets,wavelet transform,DWT,SWT,CWT,scientific | ||
Platform: Windows | ||
Platform: Linux | ||
Platform: Solaris | ||
Platform: Mac OS-X | ||
Platform: Unix | ||
Classifier: Development Status :: 5 - Production/Stable | ||
Classifier: Intended Audience :: Developers | ||
Classifier: Intended Audience :: Education | ||
Classifier: Intended Audience :: Science/Research | ||
Classifier: License :: OSI Approved :: MIT License | ||
Classifier: Operating System :: OS Independent | ||
Classifier: Programming Language :: C | ||
Classifier: Programming Language :: Python | ||
Classifier: Programming Language :: Python :: 3 | ||
Classifier: Programming Language :: Python :: 2.7 | ||
Classifier: Programming Language :: Python :: 3.5 | ||
Classifier: Programming Language :: Python :: 3.6 | ||
Classifier: Programming Language :: Python :: 3.7 | ||
Classifier: Topic :: Software Development :: Libraries :: Python Modules | ||
Requires-Dist: numpy (>=1.9.1) | ||
|
||
PyWavelets is a Python wavelet transforms module that includes: | ||
|
||
* nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT) | ||
* 1D and 2D Forward and Inverse Stationary Wavelet Transform (Undecimated Wavelet Transform) | ||
* 1D and 2D Wavelet Packet decomposition and reconstruction | ||
* 1D Continuous Wavelet Tranfsorm | ||
* Computing Approximations of wavelet and scaling functions | ||
* Over 100 built-in wavelet filters and support for custom wavelets | ||
* Single and double precision calculations | ||
* Real and complex calculations | ||
* Results compatible with Matlab Wavelet Toolbox (TM) | ||
|
||
|
55 changes: 55 additions & 0 deletions
55
.eggs/PyWavelets-1.0.0-py3.7-linux-x86_64.egg/EGG-INFO/RECORD
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
pywt/_swt.py,sha256=1RIJMRKbp5UhsCBR2YAPtc_DSYs7gGC2qMPVibY4ZWM,19624 | ||
pywt/_multidim.py,sha256=TE562UFNeNbeBR2b1BJG6Fvml-AzbEJ1vifEmXcwZ54,10897 | ||
pywt/_cwt.py,sha256=3OR5RZaOeHY90N5kGS0JSa0M4bEn4uSNkCmWMorPtQY,4038 | ||
pywt/_wavelet_packets.py,sha256=6LTs4Ft2cNH5g2RxrYglOg6x0UgYqBj2xJrXSkua84o,24286 | ||
pywt/__init__.py,sha256=vi7HuOCXrFugIjMpwf4SdkrwQgdrh2P-5Q1s3xd4YYA,1267 | ||
pywt/_thresholding.py,sha256=z2u-7EZT3fJ9RhuhPry8NBDqoqaEdoKMaEH7SE-TPU4,8636 | ||
pywt/version.py,sha256=s2fc0l59372892RGx3Uau-BHLyv9GKkn-jnWC4RwDfc,233 | ||
pywt/_dwt.py,sha256=QOKv7Pf21e8wIWU_Nn-OfnhbwWs-IjOCdIMQMCCnJ18,12327 | ||
pywt/_utils.py,sha256=NAe-KEOH7g_LTY3XbA860O0bgJDVaaPUz2WwYgS72k0,4028 | ||
pywt/_c99_config.py,sha256=LrMSEmGvgjoA5sE-BdpF7pUOXSNCfLfNUy6RG5z-6Bo,80 | ||
pywt/_multilevel.py,sha256=tkaAWvbuVdGDY2zCN36BABCJLmDOfL7HmqUdlY2joeI,54480 | ||
pywt/_doc_utils.py,sha256=aUdX1dIzCLitHsHx2N0Gz5SZQi1baMQvP4BYgJEjS1Y,9759 | ||
pywt/_functions.py,sha256=hvOQb4tn01j1s5_lNhbBBoCMeOvF1_3Q9mt0aEA1bI8,6999 | ||
pywt/_extensions/_dwt.cpython-37m-x86_64-linux-gnu.so,sha256=AIMtLj87MoDiujSITKilJTJWlAqYkXSIybpIMOVEFe4,475104 | ||
pywt/_extensions/_cwt.cpython-37m-x86_64-linux-gnu.so,sha256=r1UXLXcwCSyeLB_4YSo6Bjn5HObPhhTW7WYpQ28nYOs,290400 | ||
pywt/_extensions/_pywt.cpython-37m-x86_64-linux-gnu.so,sha256=UtMABFSN4zn4sZIPIhTXSNQp1WRSFCjfdQ1Q1oQdHrU,525344 | ||
pywt/_extensions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 | ||
pywt/_extensions/_swt.cpython-37m-x86_64-linux-gnu.so,sha256=GFCZGU36V7GQOy-znZuG1WWSmKCzQaTkZ93gm_6gmrE,367808 | ||
pywt/tests/test_dwt_idwt.py,sha256=Wgyv_q3b-kvrtjFBo_r4xv49u3uNb1kPA804ZbXBKvc,6684 | ||
pywt/tests/test_modes.py,sha256=zOI5bio5CyPNzD_-YwKWz4zi9LijMVBv1rjd-FHL6TQ,4947 | ||
pywt/tests/test_multilevel.py,sha256=OLNRoZh9oNxpfEQWhixJiZnjy-LJkMNnwFKlpIsTrj4,35728 | ||
pywt/tests/test_functions.py,sha256=R0WqvfAGvmSQ1KIg9J3qIxh6vVBLFPiN7RUx_Q-VpCs,1262 | ||
pywt/tests/test_cwt_wavelets.py,sha256=vPv7c62puMUTWbqnu34F-SKvzcpkTnNb9jL9Xst9Gjo,10730 | ||
pywt/tests/test_data.py,sha256=fh667448ThGV2N_CCptqAtvVhptkvfulKqfZN68-xTI,2365 | ||
pywt/tests/test_wp2d.py,sha256=SgbajDJ1mds0UnXenRweb9hHuEV7hPsFjuUdoPcRgAs,6547 | ||
pywt/tests/test_wavelet.py,sha256=d-ToUH7iUjkhqBt6sF6ZttRNweMDa8lca6JUlGhgvME,11270 | ||
pywt/tests/test_swt.py,sha256=2_zZe7FFXH2F-aNexwntNF1bDGvgp1qK385Ra6gzHEA,16561 | ||
pywt/tests/test_matlab_compatibility.py,sha256=6B8O6FqfRHxPmeA2y3nzhB0Ch4uwvqSLrfN-Bj2vh7Y,6595 | ||
pywt/tests/test_thresholding.py,sha256=fd3WN37wv_Tw2EWGmdYnQRMT9KleZTvIfbtOjOpNOX8,6632 | ||
pywt/tests/test_matlab_compatibility_cwt.py,sha256=OC7hOFIn1rUQQEMRh4T_Ykbt8Vh1-RpaoWmoDsroVqk,6592 | ||
pywt/tests/test__pywt.py,sha256=Q5fajcmem0AK_Uw0eqU0wpLH8I6zvkR7jPvalAsui5A,5568 | ||
pywt/tests/test_perfect_reconstruction.py,sha256=y1x5dfY02-P1Yg-_PxOnWHpMnA8HLWyrsvFKi8B45Ig,1871 | ||
pywt/tests/test_deprecations.py,sha256=iMCKWVcweJsJsYCuO7PhhEhcSrWcNzQ3LT5wtud2-LY,2290 | ||
pywt/tests/test_concurrent.py,sha256=ZChpcQIiIosAMmAmfSmwChnaSOfmVfPzLK6rCyYpldQ,4385 | ||
pywt/tests/test_doc.py,sha256=MNv2zeKOjNnqazIa4YL-7Y-jvkuNwKammH_ReWjjUO8,528 | ||
pywt/tests/test_multidim.py,sha256=kEgEVLl6UqyAuM7W_IY-iwo7Supb-O0lOlzbJ_-CdOo,14531 | ||
pywt/tests/test_wp.py,sha256=okUlJFwVBaX-5pTxIzVGO4yy9uyCcK_0HpLimDqG9MI,6284 | ||
pywt/tests/data/dwt_matlabR2012a_result.npz,sha256=H3zj71AxK1VbM7HZArX5El_qnfH_LLHAlVWj9eLhMmM,3590870 | ||
pywt/tests/data/generate_matlab_data.py,sha256=Spz3yi0kYJF9B1-nDTHhRDBwRexvyjoCT3iuNx7T4xc,3957 | ||
pywt/tests/data/generate_matlab_data_cwt.py,sha256=GJ7dW31zW2CmiLUzQP96uQ3CK2yTU4k4TF3tMEtFDWE,3238 | ||
pywt/tests/data/wavelab_test_signals.npz,sha256=-cx0ne9JdTcq6LiKBacjM_0_En72TAiKvvFUW1yiZYE,184818 | ||
pywt/tests/data/cwt_matlabR2015b_result.npz,sha256=FA1Tx-q_1k74bb7yERH_lq4hgZEVwdNP3RVm8lu-_Zw,1819506 | ||
pywt/data/_readers.py,sha256=PSkP5ejSNiHCtZkvv8xwjOVznIo_p-hixsq_oF_UloQ,4530 | ||
pywt/data/aero.npz,sha256=34YmNXmLrJQia4ko8iTajO-LDQBJLB_fSPrG36-XqUs,227784 | ||
pywt/data/__init__.py,sha256=qoDFVHX0RNi91n3UwC7UwYU3UGzbgdGD2OCH9zGJ8mo,96 | ||
pywt/data/ascent.npz,sha256=ptVryOllcdYSTzTO3rpJ8dNZlQf2yJCtm6U4VERU6Pc,170883 | ||
pywt/data/camera.npz,sha256=CfIDuSct94Yvk3GR4d897-G0VSeL6SG3omdrbmaGyoA,160418 | ||
pywt/data/create_dat.py,sha256=8BsF3dCoixafNSi5jxZnHdvK69FTH6dIGNJNIlv6c60,625 | ||
pywt/data/_wavelab_signals.py,sha256=7ay4VKhYkMsdrmrMm_FeBKrewzGzrwuoy6sO_RkR8vY,9476 | ||
pywt/data/ecg.npy,sha256=iS9GVe4jRwWTxs8c4X8Of0f2ywMBJKkvVQ5bFyrUPTk,4176 | ||
pywt/data/sst_nino3.npz,sha256=-vMX2TEULdISSSkMpmevDecdiZ5_I4Zk3zC2xB0Qz1c,64200 | ||
PyWavelets-1.0.0.dist-info/WHEEL,sha256=AhV6RMqZ2IDfreRJKo44QWYxYeP-0Jr0bezzBLQ1eog,109 | ||
PyWavelets-1.0.0.dist-info/top_level.txt,sha256=j3eDFZWsDkiyrSwsdc1H0AjhXkTzsuJLSx-blZUoOVo,5 | ||
PyWavelets-1.0.0.dist-info/METADATA,sha256=Nn1vdyBpGZ448eq3RP56sS8HO-Kcv8yo85fAvoI3G_s,1750 | ||
PyWavelets-1.0.0.dist-info/RECORD,, |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
Wheel-Version: 1.0 | ||
Generator: bdist_wheel (0.31.1) | ||
Root-Is-Purelib: false | ||
Tag: cp37-cp37m-manylinux1_x86_64 | ||
|
1 change: 1 addition & 0 deletions
1
.eggs/PyWavelets-1.0.0-py3.7-linux-x86_64.egg/EGG-INFO/requires.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
numpy>=1.9.1 |
1 change: 1 addition & 0 deletions
1
.eggs/PyWavelets-1.0.0-py3.7-linux-x86_64.egg/EGG-INFO/top_level.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
pywt |
45 changes: 45 additions & 0 deletions
45
.eggs/PyWavelets-1.0.0-py3.7-linux-x86_64.egg/pywt/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
# flake8: noqa | ||
|
||
# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/> | ||
# Copyright (c) 2012-2016 The PyWavelets Developers | ||
# <https://github.com/PyWavelets/pywt> | ||
# See COPYING for license details. | ||
|
||
""" | ||
Discrete forward and inverse wavelet transform, stationary wavelet transform, | ||
wavelet packets signal decomposition and reconstruction module. | ||
""" | ||
|
||
from __future__ import division, print_function, absolute_import | ||
from distutils.version import LooseVersion | ||
|
||
from ._extensions._pywt import * | ||
from ._functions import * | ||
from ._multilevel import * | ||
from ._multidim import * | ||
from ._thresholding import * | ||
from ._wavelet_packets import * | ||
from ._dwt import * | ||
from ._swt import * | ||
from ._cwt import * | ||
|
||
from . import data | ||
|
||
__all__ = [s for s in dir() if not s.startswith('_')] | ||
try: | ||
# In Python 2.x the name of the tempvar leaks out of the list | ||
# comprehension. Delete it to not make it show up in the main namespace. | ||
del s | ||
except NameError: | ||
pass | ||
|
||
from pywt.version import version as __version__ | ||
|
||
import numpy as np | ||
if np.lib.NumpyVersion(np.__version__) >= '1.14.0': | ||
from ._utils import is_nose_running | ||
if is_nose_running(): | ||
np.set_printoptions(legacy='1.13') | ||
|
||
from numpy.testing import Tester | ||
test = Tester().test |
3 changes: 3 additions & 0 deletions
3
.eggs/PyWavelets-1.0.0-py3.7-linux-x86_64.egg/pywt/_c99_config.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# Autogenerated file containing compile-time definitions | ||
|
||
_have_c99_complex = 1 |
107 changes: 107 additions & 0 deletions
107
.eggs/PyWavelets-1.0.0-py3.7-linux-x86_64.egg/pywt/_cwt.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
import numpy as np | ||
|
||
from ._extensions._pywt import (DiscreteContinuousWavelet, ContinuousWavelet, | ||
Wavelet, _check_dtype) | ||
from ._functions import integrate_wavelet, scale2frequency | ||
|
||
__all__ = ["cwt"] | ||
|
||
|
||
def cwt(data, scales, wavelet, sampling_period=1.): | ||
""" | ||
cwt(data, scales, wavelet) | ||
One dimensional Continuous Wavelet Transform. | ||
Parameters | ||
---------- | ||
data : array_like | ||
Input signal | ||
scales : array_like | ||
The wavelet scales to use. One can use | ||
``f = scale2frequency(scale, wavelet)/sampling_period`` to determine | ||
what physical frequency, ``f``. Here, ``f`` is in hertz when the | ||
``sampling_period`` is given in seconds. | ||
wavelet : Wavelet object or name | ||
Wavelet to use | ||
sampling_period : float | ||
Sampling period for the frequencies output (optional). | ||
The values computed for ``coefs`` are independent of the choice of | ||
``sampling_period`` (i.e. ``scales`` is not scaled by the sampling | ||
period). | ||
Returns | ||
------- | ||
coefs : array_like | ||
Continuous wavelet transform of the input signal for the given scales | ||
and wavelet | ||
frequencies : array_like | ||
If the unit of sampling period are seconds and given, than frequencies | ||
are in hertz. Otherwise, a sampling period of 1 is assumed. | ||
Notes | ||
----- | ||
Size of coefficients arrays depends on the length of the input array and | ||
the length of given scales. | ||
Examples | ||
-------- | ||
>>> import pywt | ||
>>> import numpy as np | ||
>>> import matplotlib.pyplot as plt | ||
>>> x = np.arange(512) | ||
>>> y = np.sin(2*np.pi*x/32) | ||
>>> coef, freqs=pywt.cwt(y,np.arange(1,129),'gaus1') | ||
>>> plt.matshow(coef) # doctest: +SKIP | ||
>>> plt.show() # doctest: +SKIP | ||
---------- | ||
>>> import pywt | ||
>>> import numpy as np | ||
>>> import matplotlib.pyplot as plt | ||
>>> t = np.linspace(-1, 1, 200, endpoint=False) | ||
>>> sig = np.cos(2 * np.pi * 7 * t) + np.real(np.exp(-7*(t-0.4)**2)*np.exp(1j*2*np.pi*2*(t-0.4))) | ||
>>> widths = np.arange(1, 31) | ||
>>> cwtmatr, freqs = pywt.cwt(sig, widths, 'mexh') | ||
>>> plt.imshow(cwtmatr, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto', | ||
... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max()) # doctest: +SKIP | ||
>>> plt.show() # doctest: +SKIP | ||
""" | ||
|
||
# accept array_like input; make a copy to ensure a contiguous array | ||
dt = _check_dtype(data) | ||
data = np.array(data, dtype=dt) | ||
if not isinstance(wavelet, (ContinuousWavelet, Wavelet)): | ||
wavelet = DiscreteContinuousWavelet(wavelet) | ||
if np.isscalar(scales): | ||
scales = np.array([scales]) | ||
if data.ndim == 1: | ||
if wavelet.complex_cwt: | ||
out = np.zeros((np.size(scales), data.size), dtype=complex) | ||
else: | ||
out = np.zeros((np.size(scales), data.size)) | ||
precision = 10 | ||
int_psi, x = integrate_wavelet(wavelet, precision=precision) | ||
for i in np.arange(np.size(scales)): | ||
step = x[1] - x[0] | ||
j = np.floor( | ||
np.arange(scales[i] * (x[-1] - x[0]) + 1) / (scales[i] * step)) | ||
if np.max(j) >= np.size(int_psi): | ||
j = np.delete(j, np.where((j >= np.size(int_psi)))[0]) | ||
coef = - np.sqrt(scales[i]) * np.diff( | ||
np.convolve(data, int_psi[j.astype(np.int)][::-1])) | ||
d = (coef.size - data.size) / 2. | ||
if d > 0: | ||
out[i, :] = coef[int(np.floor(d)):int(-np.ceil(d))] | ||
elif d == 0.: | ||
out[i, :] = coef | ||
else: | ||
raise ValueError( | ||
"Selected scale of {} too small.".format(scales[i])) | ||
frequencies = scale2frequency(wavelet, scales, precision) | ||
if np.isscalar(frequencies): | ||
frequencies = np.array([frequencies]) | ||
for i in np.arange(len(frequencies)): | ||
frequencies[i] /= sampling_period | ||
return out, frequencies | ||
else: | ||
raise ValueError("Only dim == 1 supportet") |
Oops, something went wrong.