Skip to content

MatanRubin/st-pydantic

Β 
Β 

Repository files navigation

Streamlit Pydantic

Auto-generate Streamlit UI elements from Pydantic models.

Getting Started β€’ Documentation β€’ Support β€’ Report a Bug β€’ Contribution β€’ Changelog

st-pydantic is a fork of the fantastic st-pydantic package, which is no longer maintained by the original author, @LukasMasuch. I tried reaching out to the original maintainer, but I did not get a response, so I created this fork. I intend on maintaining it and adding new features as needed.

The original README is below.

st-pydantic makes it easy to auto-generate UI elements from Pydantic models or dataclasses. Just define your data model and turn it into a full-fledged UI form. It supports data validation, nested models, and field limitations. st-pydantic can be easily integrated into any Streamlit app.

Beta Version: Only suggested for experimental usage.


Try out and explore various examples in our playground here.


Highlights

  • πŸͺ„Β  Auto-generated UI elements from Pydantic models & Dataclasses.
  • πŸ“‡Β  Out-of-the-box data validation.
  • πŸ“‘Β  Supports nested Pydantic models.
  • πŸ“Β  Supports field limits and customizations.
  • 🎈  Easy to integrate into any Streamlit app.

Getting Started

Installation

Requirements: Python 3.6+.

pip install st-pydantic

Usage

  1. Create a script (my_script.py) with a Pydantic model and render it via pydantic_form:

    import streamlit as st
    from pydantic import BaseModel
    import st_pydantic as sp
    
    class ExampleModel(BaseModel):
        some_text: str
        some_number: int
        some_boolean: bool
    
    data = sp.pydantic_form(key="my_form", model=ExampleModel)
    if data:
        st.json(data.json())
  2. Run the streamlit server on the python script: streamlit run my_script.py

  3. You can find additional examples in the examples section below.

Examples


πŸ‘‰Β  Try out and explore these examples in our playground here


The following collection of examples demonstrate how Streamlit Pydantic can be applied in more advanced scenarios. You can find additional - even more advanced - examples in the examples folder or in the playground.

Simple Form

import streamlit as st
from pydantic import BaseModel

import st_pydantic as sp


class ExampleModel(BaseModel):
    some_text: str
    some_number: int
    some_boolean: bool


data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(data.json())

Date Validation

import streamlit as st
from pydantic import BaseModel, Field, HttpUrl
from pydantic.color import Color

import st_pydantic as sp


class ExampleModel(BaseModel):
    url: HttpUrl
    color: Color
    email: str = Field(..., max_length=100, regex=r"^\S+@\S+$")


data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(data.json())

Dataclasses Support

import dataclasses
import json

import streamlit as st
from pydantic.json import pydantic_encoder

import st_pydantic as sp


@dataclasses.dataclass
class ExampleModel:
    some_number: int
    some_boolean: bool
    some_text: str = "default input"


data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(json.dumps(data, default=pydantic_encoder))

Complex Nested Model

from enum import Enum
from typing import Set

import streamlit as st
from pydantic import BaseModel, Field, ValidationError, parse_obj_as

import st_pydantic as sp


class OtherData(BaseModel):
    text: str
    integer: int


class SelectionValue(str, Enum):
    FOO = "foo"
    BAR = "bar"


class ExampleModel(BaseModel):
    long_text: str = Field(..., description="Unlimited text property")
    integer_in_range: int = Field(
        20,
        ge=10,
        lt=30,
        multiple_of=2,
        description="Number property with a limited range.",
    )
    single_selection: SelectionValue = Field(
        ..., description="Only select a single item from a set."
    )
    multi_selection: Set[SelectionValue] = Field(
        ..., description="Allows multiple items from a set."
    )
    single_object: OtherData = Field(
        ...,
        description="Another object embedded into this model.",
    )


data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(data.json())

Render Input

from pydantic import BaseModel

import st_pydantic as sp


class ExampleModel(BaseModel):
    some_text: str
    some_number: int = 10  # Optional
    some_boolean: bool = True  # Option


input_data = sp.pydantic_input("model_input", ExampleModel, use_sidebar=True)

Render Output

import datetime

from pydantic import BaseModel, Field

import st_pydantic as sp


class ExampleModel(BaseModel):
    text: str = Field(..., description="A text property")
    integer: int = Field(..., description="An integer property.")
    date: datetime.date = Field(..., description="A date.")


instance = ExampleModel(text="Some text", integer=40, date=datetime.date.today())
sp.pydantic_output(instance)

Custom Form

import streamlit as st
from pydantic import BaseModel

import st_pydantic as sp


class ExampleModel(BaseModel):
    some_text: str
    some_number: int = 10
    some_boolean: bool = True


with st.form(key="pydantic_form"):
    sp.pydantic_input(key="my_input_model", model=ExampleModel)
    submit_button = st.form_submit_button(label="Submit")

Support & Feedback

Type Channel
🚨  Bug Reports
🎁  Feature Requests
πŸ‘©β€πŸ’»Β  Usage Questions
πŸ“’Β  Announcements

Documentation

The API documentation can be found here. To generate UI elements, you can use the high-level pydantic_form method. Or the more flexible lower-level pydantic_input and pydantic_output methods. See the examples section on how to use those methods.

Contribution

Development

To build the project and run the style/linter checks, execute:

make install
make check

Run make help to see additional commands for development.


Licensed MIT. Created and maintained with ❀️  by developers from Berlin.

About

πŸͺ„ Auto-generate Streamlit UI from Pydantic Models and Dataclasses.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 96.9%
  • Makefile 3.1%