Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Correlation Matrix Calculation #43

Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
118 changes: 118 additions & 0 deletions vignettes/calculate_correlation.Rmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
---
title: "Correlation Matrix Calculation"
author: "Chenguang Zhang"
date: "2024-05-14"
output: html_document
---

The weighted parametric group sequential design (WPGSD) (Anderson et al. (2022)) approach allows one to take advantage of the known correlation structure in constructing efficacy bounds to control family-wise error rate (FWER) for a group sequential design. Here correlation may be due to common observations in nested populations, due to common observations in overlapping populations, or due to common observations in the control arm.

## Notation

Suppose that in a group sequential trial there are $m$ elementary null hypotheses $H_i$, $i \in I={1,...,m}$, and there are $K$ analyses. Let $k$ be the index for the interim analyses and final analyses, $k=1,2,...K$. For any noempty set $J \subseteq I$, we denote the intersection hypothesis $H_J=\cap_{j \in J}H_j$. We note that $H_I$ is the global null hypothesis.

We assume the plan is for all hypotheses to be tested at each of the $k$ planned analyses if the trial continues to the end for all hypotheses. We further assume that the distribution of the $m \times K$ tests of $m$ individual hypotheses at all $k$ analyses is multivariate normal with a completely known correlation matrix.

Let $Z_{ik}$ be the standardized normal test statistic for hypothesis $i \in I$, analysis $1 \le k \le K$. Let $n_{ik}$ be the number of events collected cumulatively through stage $k$ for hypothesis $i$. Then $n_{i \wedge i',k \wedge k'}$ is the number of events included in both $Z_{ik}$ and $i$, $i' \in I$, $1 \le k$, $k' \le K$. The key of the parametric tests to utilize the correlation among the test statistics. The correlation between $Z_{ik}$ and $Z_{i'k'}$ is
$$Corr(Z_{ik},Z_{i'k'})=\frac{n_{i \wedge i',k \wedge k'}}{\sqrt{n_{ik}*n_{i'k'}}}$$.

## Examples

In a 2-arm controlled clinical trial example with one primary endpoint, there are 3 patient populations defined by the status of two biomarkers A and B:

* Biomarker A positive, the population 1,
* Biomarker B positive, the population 2,
* Overall population.

The 3 primary elementary hypotheses are:

* H1: the experimental treatment is superior to the control in the population 1
* H2: the experimental treatment is superior to the control in the population 2
* H3: the experimental treatment is superior to the control in the overall population

Assume an interim analysis and a final analysis are planned for the study. The number of events are listed as
```{r}
library(dplyr)
library(tibble)
library(gt)
event_tb <- tribble(
~Population, ~"Number of Event in IA", ~"Number of Event in FA",
"Population 1", 100, 200,
"Population 2", 110, 220,
"Overlap of Population 1 and 2", 80, 160,
"Overall Population", 225, 450
)
event_tb %>%
gt() %>%
tab_header(title = "Number of events at each population")
```

### Example 1 - Same Analyses Different Population
Let's consider a simple situation, we want to compare the population 1 and population 2 in only interim analyses. Then $k=1$, and to compare $H_{1}$ and $H_{2}$, the $i$ will be $i=1$ and $i=2$.
The correlation matrix will be
$$Corr(Z_{11},Z_{21})=\frac{n_{1 \wedge 2,1 \wedge 1}}{\sqrt{n_{11}*n_{21}}}$$
The number of events are listed as
```{r}
event_tbl <- tribble(
~Population, ~"Number of Event in IA",
"Population 1", 100,
"Population 2", 110,
"Overlap in population 1 and 2", 80
)
event_tbl %>%
gt() %>%
tab_header(title = "Number of events at each population in example 1")
```
The the corrleation could be simply calculated as
$$Corr(Z_{11},Z_{21})=\frac{80}{\sqrt{100*110}}=0.76$$
```{r}
Corr1 <- 80 / sqrt(100 * 110)
round(Corr1, 2)
```

### Example 2 - Same Population Different Analyses
Let's consider another simple situation, we want to compare single population, for example population 1, but in different analyses, interim and final analyses. Then $i=1$, and to compare IA and FA, the $k$ will be $k=1$ and $k=2$.
The correlation matrix will be
$$Corr(Z_{11},Z_{12})=\frac{n_{1 \wedge 1,1 \wedge 2}}{\sqrt{n_{11}*n_{12}}}$$
The number of events are listed as
```{r}
event_tb2 <- tribble(
~Population, ~"Number of Event in IA", ~"Number of Event in FA",
"Population 1", 100, 200
)
event_tb2 %>%
gt() %>%
tab_header(title = "Number of events at each analyses in example 2")
```
The the corrleation could be simply calculated as
$$Corr(Z_{11},Z_{12})=\frac{100}{\sqrt{100*200}}=0.71$$
```{r}
Corr1 <- 100 / sqrt(100 * 200)
round(Corr1, 2)
```
### Example 3 - Cross Population Cross Analyses
Let's consider the situation that we want to compare population 1 in interim analyses and population 2 in final analyses. Then for different population, $i=1$ and $i=2$, and to compare IA and FA, the $k$ will be $k=1$ and $k=2$.
The correlation matrix will be
$$Corr(Z_{11},Z_{22})=\frac{n_{1 \wedge 1,2 \wedge 2}}{\sqrt{n_{11}*n_{22}}}$$
The number of events are listed as
```{r}
event_tb3 <- tribble(
~Population, ~"Number of Event in IA", ~"Number of Event in FA",
"Population 1", 100, 200,
"Population 2", 110, 220,
"Overlap in population 1 and 2", 80, 160
)
event_tb3 %>%
gt() %>%
tab_header(title = "Number of events at each population & analyses in example 3")
```
The the corrleation could be simply calculated as
$$Corr(Z_{11},Z_{22})=\frac{80}{\sqrt{100*220}}=0.54$$
```{r}
Corr1 <- 80 / sqrt(100 * 220)
round(Corr1, 2)
```
Now we know how to calculate the correlation values under different situations, and the generate_corr function was built based on this logic. We can directly calculate the results for each cross situation via the function. See code below.
```{r}
# library(wpgsd)
```
Loading