Skip to content

MoritzMennenga/ctv-archaeology

 
 

Repository files navigation

CRAN Task View: Archaeological Science

DOI

Maintainer: Ben Marwick Contact: benmarwick at gmail.com Version: 2022-11-08

This CRAN Task View contains a list of packages useful for scientific work in Archaeology, grouped by topic. Note that this is not an official CRAN Task View, just one I have prepared for my own convenience, so it includes some packages only on GitHub and other non-CRAN resources I find useful. Many of the most highly recommended packages listed here can be installed in a single step by installing the tidyverse package.

Besides these packages, a very wide variety of functions suitable for scientific work in Archaeology is provided by both the basic R system (and its set of recommended core packages), and a number of other packages on the Comprehensive R Archive Network (CRAN) and GitHub. Consequently, several of the other CRAN Task Views may contain suitable packages, in particular the Social Sciences, Spatial, Spatio-temporal, Cluster analysis, Multivariate Statistics, Bayesian inference, Visualization, and Reproducible research Task Views.

Contributions to this Task View are always welcome, and encouraged. The source file for this particular task view file resides in a GitHub repository (see below), and pull requests are the preferred method for contributions.

Table of Contents

Data acquisition

  • The ideal method is to export your spreadsheets from Excel (or whatever program you made them) as CSVs (comma-separated-values, a simple, non-proprietary plain-text-based format that is very transparent, being human-readable, easily machine-processable and suitable for archival storage) and read them into R using the base function read.csv(). Data in other types of plain text files can be read in with read.table().
  • To read Microsoft Excel files into R there is readxl. OpenDocument Spreadsheet files can be read into R using readODS.
  • For working with untidy and/or complex Excel spreadsheets (i.e. many tables in one sheet, coloured cells, cells with formulas, etc.), use jailbreakr, xlsxtractr, tidyxl and unpivotr
  • Text data (as in sentences and paragraphs) can be read in and analysed with the tm package or tidytext. If the text is in a Microsoft Word file, use textreadr, or if it's a PDF file, use pdftools. Text in image files can be extracted with tesseract
  •   For quickly reading in a very large number of CSV files, or very large CSV files, use fread() from the data.table package or functions in the readr package. For plain text (CSV, TSV, etc) files that are too big to fit in memory, use chunked to read and operate on them in small chunks.
  • RODBC, RMySQL, RPostgreSQL, RSQLite for connecting R to SQL databases. RODBC can connect to Microsoft Access databases.
  • The haven and foreign packages can be used for reading and writing files from certain versions of Minitab, S, SAS, SPSS, Stata, Systat and Weka.
  • ESRI shapefiles can be read using rgdal or maptools
  • R can receive data directly from the web using rvest, httr, XML, jsonlite, RSelenium (requires Selenium 2.0 Remote WebDriver). R can be programmed to be a web-scraper using rvest and/or Rselenium. The Web Technologies task view gives more details.
  • Google spreadsheets can be read into R using the googlesheets package
  • Tables can be read directly from Microsoft Word documents with docxtractr, and from PDF documents with tabulizer
  • Datasets from the Open Context repository can be browsed and read into R using the opencontext package

Data manipulation

  • dplyr and data.table for splitting the data up by groups, applying some common or custom functions, and combining the output back into a convenient form (ie. typical aggregation, splitting and summarising operations). Both packages are fast on very large datasets.
  • For cleaning, examining, and making quick summaries of data, janitor, skimr, statar, and xda maybe useful. tabplot has functions for exploratory data visualisation of tables
  • tidyr for rearranging the data from long to wide forms, and more complex reshaping.
  • purrr simplifies working with lists, applying functions to list elements and collecting the results
  • broom takes the output of many built-in functions in R, such as lm or t.test, and turns them into tidy data frames.
  • measurements, convertr, and units converts between metric and imperial units, or calculate a dimension's unknown value from other dimensions' measurements.

Visualising data

  • ggplot2 produces a very wide variety of attractive plots with a highly flexible and logical syntax.
  • Extensions include ggbiplot (PCA biplots with ellipses), GGally (plot matrices), ggtern (ternary plots), ggfortify (many methods for plotting PCA, clustering, linear model output, etc., using ggplot2),ggalt (more geoms, coords, stats, scales and fonts, including splines, 1d and 2d densities), waffle (for square pie charts), ggraph for treemaps, ggfan for fanplots, tidybayes for plotting output of Bayesian analysis, ggridges for ridge plots, ggalt for many additional geoms, ggrepel for moving overlapping text labels away from each other, and shadowtext for a halo around text to make it more readable on busy plots.
  • For showing distributions across several categories: ggforce, ggbeeswarm, vipor, sinaplot
  • For isolines and isobands use ggisoband
  • plotly and ggiraph make ggplots interactive with mouse-over pop-ups, zooming, click-actions, etc. scatterD3 makes highly interactive scatter plots
  • circlize implements Circos in R for circular and chord plots. Rose plots can be made with ggplot2, Schmidt diagrams can be made with the net function in RFOC or the Stereo* functions in RockFab
  • plotrix has the function battleship.plot() to make Ford's battleship diagrams.
  • ggmap combines the spatial information of static maps from Google Maps, OpenStreetMap, Stamen Maps or CloudMade Maps with the layered grammar of graphics implementation of ggplot2
  • Stratigraphic data plots can be drawn using tidypaleo, the Stratiplot() function in analogue and functions strat.plot() and strat.plot.simple in the rioja package. The rioja package also includes chclust() for stratigraphically constrained clustering, and related dendrogram plotting methods.
  • rgl and plotly for interactive 3D plots, and scatterplot3d also draws 3D point clouds.
  • tabplot for exploratory data visualisation of tables
  • For schematic diagrams, such as Harris matrices, DiagrammeR is useful.
  • For colour schemes in plots: viridis for perfectly perceptually-uniform colours, RColorBrewer, wesanderson, and munsell for exploring and using the Munsell colour system, and for some extra themes for ggplot2, including some Tufte-inspired themes, see ggthemes.

Multi-panel plot layouts

  • To combine and align multiple ggplot2 plots (and other image types) in one panel:
  • use cowplot for a publication-ready theming and labelling
  • patchwork for a simple grammar using +, /, etc
  • gridExtra for configuring layouts with a matrix
  • multipanelfigure, perhaps the most versatile for combining different elements

Analysis in general

  • Base R, especially the stats package, has a lot of functionality useful for analysing archaeological data. For example, chisq.test(), prop.test(), binom.test(), t.test(), wilcox.test(), kruskal.test(), mcnemar.test(), cor.test(), power.t.test(), power.prop.test(), power.anova.test() among many others. Hmisc includes bootstrapping, setting confidence intervals, and power analysis functions, see also psych for useful descriptive statistics and visualizations.
  • corrr contains many convenient functions for exploring correlations.
  • Bayesian and resampling variants of these also exist, for example in the MCMCpack, BEST (requires JAGS), Bayesian First Aid (also requires JAGS) packages (see the Bayesian task view for more) and the coin, boot, and bootstrap packages (see also msm).
  • For analysing change over time, bcp, changepoint, ecp, AnomalyDetection and BreakoutDetection provide functions for detecting distributional changes within time-ordered observations.
  • abc provides functions for parameter estimation, model selection, and goodness-of-fit.

Analysis of categorical and count data

  • The table() function in the base package and the xtabs() and ftable() functions in the stats package construct contingency tables.
  • The chisq.test() and fisher.test() functions in the stats package may be used to test for independence in two-way contingency tables
  • The assocstats() function in the vcd package computes the Pearson chi-Squared test, the Likelihood Ratio chi-Squared test, the phi coefficient, the contingency coefficient and Cramer's V for plain or stratified contingency tables.

Linear, generalized linear models, and non-linear models

  • Linear models can be fitted (via OLS) with lm() (from stats). The modelr package has helper functions for pipeable modelling (e.g. cross-validation, bootstrapping). For data from a non-normal population, or when there are apparent outliers, lmPerm computes linear models using permutation tests.
  • Bayesian fitting of linear and non-linear models is possible with rstanarm, brms, and rethinking.
  • The nls() function (from stats) as well as the package minpack.lm allow the solution of nonlinear least squares problems.
  • Correlated and/or unequal variances can be modeled using the gnls() function of the nlme package and by nlreg. The nlme package is supported by Pinheiro & Bates (2000) Mixed-effects Models in S and S-PLUS, Springer, New York.
  • The generic anova() function in the stats package constructs sequential analysis of variance and analysis of deviance tables, and can compute F and likelihood-ratio tests for nested models. (It is typical for other classes of statistical models in R to have anova methods as well.) The generic anova function in the car package (associated with Fox, An R and S-PLUS Companion to Applied Regression, Sage, 2002) constructs so-called "Type-II" and "Type-III" tests for linear and generalized linear models.
  • cerUB for multivariate statistic protocols for integrating archaeometric data (geochemical, mineralogical, petrographic)

Multivariate statistics

  • The Cluster task view provides a more detailed discussion of available cluster analysis methods and appropriate R functions and packages.
  • caret and FactoMiner are popular packages with a suite of multivariate methods
  • aplpack provides bagplots()
  • lda() and qda() within MASS provide linear and quadratic discrimination respectively.

Model Testing and Validation

  • caret provides many functions for model training, testing, and validation. There is also Max Kuhn's excellent companion book called "Applied Predictive Modeling" (Springer, also available as an ebook). The mlr package also provides classification, regression, and machine learning methods.
  • Other packages that enable tuning and evaluation of models include bootstrap and Hmisc
  • The CVtools and DAAG packages include cross-validation functions for evaluating the optimality of tuning parameters such as sample sizes or number of predictors etc., in statistical models
  • rsample creates different types of resamples and corresponding classes for their analysis

Hierarchical cluster analysis

  • The package cluster provides functions for cluster analysis following the methods described in Kaufman and Rousseeuw (1990) Finding Groups in data: an introduction to cluster analysis, Wiley, New York
  • There are also hclust() in the stats package and hcluster() in amap
  • pvclust is a package for assessing the uncertainty in hierarchical cluster analysis. It provides approximately unbiased p-values as well as bootstrap p-values. Enhanced plotting is also available through the dendextend package.
  • dendextend Offers a set of functions for extending dendrogram objects in R. It allows to both adjust a tree's graphical parameters - the color, size, type, etc of its branches, nodes and labels - as well as visually (and statistically) compare different dendrograms to one another.

Other partitioning methods

  • kmeans() in stats provides k-means clustering and cmeans() in e1071 implements a fuzzy version of the k-means algorithm. The recommended package cluster also provides functions for various partitioning methodologies.
  • To compute the optimum number of clusters there is the pamk() function in the fpc package, cascadeKM() in vegan, Mclust() in mclust, apcluster() in apcluster
  • Self-organising maps can be produced with the kohonen
  • Percolation analysis can be produced with the percopackage

Mixture models and model-based cluster analysis

  • mclust and flexmix provide implementations of model-based cluster analysis.

Principle components and other projection, scaling, and ordination methods

  • Principal Components (PCA) is available via the prcomp() function (based on svd), rda() (in package vegan), pca() (in package labdsv) and dudi.pca() (in package ade4), provide more ecologically-orientated implementations. Plotting of PCA output is available in ggbiplot and ggfortify.
  • Redundancy Analysis (RDA) is available via rda() in vegan and pcaiv() in ade4.
  • Canonical Correspondence Analysis (CCA) is implemented in cca() in both vegan and ade4.
  • Detrended Correspondence Analysis (DCA) is implemented in decorana() in vegan.
  • Principal coordinates analysis (PCO) is implemented in dudi.pco() in ade4, pco() in labdsv, pco() in ecodist, and cmdscale() in package MASS.
  • Non-Metric multi-Dimensional Scaling (NMDS) is provided by isoMDS() in package MASS and nmds() in ecodist. nmds(), a wrapper function for isoMDS(), is also provided by package labdsv. vegan provides helper function metaMDS() for isoMDS(), implementing random starts of the algorithm and standardised scaling of the NMDS results. The approach adopted by vegan with metaMDS() is the recommended approach for ecological data.
  • corresp() and mca() in MASS provide simple and multiple correspondence analysis respectively. ca also provides single, multiple and joint correspondence analysis. ca() and mca() in ade4 provide correspondence and multiple correspondence analysis respectively, as well as adding homogeneous table analysis with hta(). Further functionality is also available within vegan co-correspondence is available from cocorresp. FactoMineR provides CA() and MCA() which also enable simple and multiple correspondence analysis as well as associated graphical routines. CAinterprTools has functions for correspondence analysis and diagnostics.
  • Seriation methods are available in seriation, which includes bertinplot() for producing battleship plots, and CAseriation which also has a battleship plotting function.
  • tabula provides methods to analyse and visualise archaeological count data (artifacts, faunal remains, etc.) using diversity measures and Ford (1962) and Bertin (1977) diagrams.
  • dimensio provides a set of tools to compute, extract, summarize and visualize results of Principal Components Analysis (PCA) and Correspondence Analysis (CA) based on the Singular Value Decomposition (SVD). It also includes methods for partial bootstrap validation.

Dissimilarity coefficients

  • dist() in standard package stats, daisy() in recommended package cluster, vegdist() in vegan, dsvdis() in labdsv, Dist() in amap, distance() in ecodist, a suite of functions in ade4, and rdist for very fast distance computations.
  • simba provides functions for the calculation of similarity and multiple plot similarity measures with binary data (for instance presence/absence data)
  • distance() in the analogue package can be used to calculate dissimilarity between samples of one matrix and those of a second matrix. The same function can be used to produce pair-wise dissimilarity matrices, though the other functions listed above are faster. distance() can also be used to generate matrices based on Gower's coefficient for mixed data (mixtures of binary, ordinal/nominal and continuous variables). Function daisy() in package cluster provides a faster implementation of Gower's coefficient for mixed-mode data than distance() if a standard dissimilarity matrix is required. Function gowdis() in package FD also computes Gower's coefficient and implements extensions to ordinal variables.
  • DistatisR provides functions for three-way multidimensional scaling for the analysis of multiple distance/covariance matrices collected on the same set of observations.
  • Simple and partial Mantel tests to compute the Mantel statistic as a matrix correlation between two dissimilarity matrices are available in vegan and ecodist

Making maps and using R as a Geographical Information System

  • Making maps: ggspatial for easy plotting of most kinds of spatial data, see also: maps, rworldmap, mapdata, maptools, mapproj,mapsf, ggplot2, ggmap, RgoogleMaps, cartography RColorBrewer
  • Scale bars and North arrows can be added to maps made with ggplot and ggmap using GISTools, ggsn or legendMap.
  • Interactive mapping of spatial objects with zooming and panning is possible with leaflet and geomapview
  • To interactively create and edit spatial objects (points, lines, polygons), use mapedit, and to smooth drawn polygons, use smoothr
  • R has many packages that enable it to be used as a GIS for spatial analysis: sf, sp, raster, rasterVis, shapefiles, spatial, spatstat, splancs, ipdw, geoR, argosfilter, ads, spdep, gstat, GISTools
  • spgrass6 and rgrass7 provides facilities for using all GRASS geographical information system commands from the R command line. RQGIS establishes an interface between R and QGIS, i.e. it allows the user to access QGIS functionalities from within R.
  • spdply provides methods for dplyr verbs for 'sp' and 'Spatial' class objects.
  • rgdal uses the GDAL (Geospatial Data Abstraction Library) (raster) and OGR (vector) data I/O library, as well as PROJ.4 for CRS (coordinate reference systems) (re)projections
  • rgeos uses the GEOS (Geometry Open Source) library, which powers PostGIS: does the 'usual' geometry operations for features
  • The Spatial and Spatio Temporal task views have more details.
  • recexcavAAR 3D Reconstruction of Archaeological Excavations
  • SiteExploitationTerritories implements the Tobler Hiking Function for spatial time-cost analysis of rasters
  • klrfome provides functions to model a single scalar outcome (e.g. presence/absence of an archaeological site) to a distribution of features (such as landscape and environmental variables).

Environmental & geological analysis

  • Transfer function models including weighted averaging (WA), modern analogue technique (MAT), Locally-weighted WA, & maximum likelihood (aka Gaussian logistic) regression (GLR) are provided by analogue, vegan, and rioja for stratigraphic analyses
  • G2Sd gives full descriptive statistics and a physical description of sediments based on grain-size distributions, soiltexture and ggtern for ternary plots of soil texture
  • Constrained clustering of stratigraphic data is provided by function chclust() in the form of constrained hierarchical clustering in rioja.
  • Stratigraphic columns can be plotted and analysed with the the SDAR package.
  • Benn diagrams can be drawn with plotrix and Woodcock diagrams with RFOC.
  • Function for circular statistics such as the Rayleigh test and many others, can be found in CircStats, RFOC, circular, Directional, and heR.Misc
  • The siar package takes data on organism isotopes and fits a Bayesian model to their dietary habits based upon a Gaussian likelihood with a mixture dirichlet-distributed prior on the mean
  • The zooaRch package has functions for survival analysis of zooarchaeological datasets
  • Functions for tree ring analysis can be found in dplR
  • Orientationsfor doing fabric analysis. Initially intended for use with total station coordinate data (two XYZ points on the long axis of an object) but bearing and plunge data can be transformed into the appropriate format for use here (see McPherron 2018).
  • See the Environmetrics task view for more.

Dating

  • Radiocarbon dates can be calibrated using Bchron with various calibration curves (including user generated ones); also does Age-depth modelling, relative sea level rate estimation incorporating time uncertainty in polynomial regression models; and non-parametric phase modelling via Gaussian mixtures as a means to determine the activity of a site (and as an alternative to the Oxcal function SUM).
  • rcarbon for basic calibration, modelling, hypothesis testing
  • Bayesian age-depth modelling of radiocarbon dates is also available in Bacon, and clam contains functions for "classical", non-Bayesian age-depth modelling. These are not R packages, but clam has been packaged for easy use.
  • c14bazAAR for the retrieval and preparation of large radiocarbon datasets.
  • The oxcAAR package allows you to use R to connect to a local installation of the OxCal software to calibrate radiocarbon dates and a variety of other OxCal operations.
  • ArchaeoPhases provides statistical tools to analyze and to estimate archaeological phases from the posterior distribution (i.e. MCMC samples) of a sequence of dates. Includes testing procedures to check the presence of a gap between two successive phases or periods. chronos is a fork of ArchaeoPhases v1.5 (Philippe and Vibet 2020) rewritten in S4 and using ggplot2
  • Various R functions for Luminescence Dating data analysis are in the Luminescence package (including radial plotting) and in the numOSL package, including equivalent dose calculation, annual dose rate determination, growth curve fitting, decay curve decomposition, statistical age model optimization, and statistical plot visualization.
  • The archSeries makes chronologies from information from multiple entities with varying chronological resolution and overlapping date ranges
  • The ADMUR package provides tools to directly model underlying population dynamics using chronological datasets (radiocarbon and other) with a variety of models, including Continuous Piecewise Linear (CPL) model framework, and model comparison framework using BIC.
  • For time series analysis using calendar dates, zoo and padr are useful.
  • SPARTAAS Statistical pattern recognition and dating using archaeological artefacts assemblages.
  • kairos provides methods for analysis of chronological patterns from archaeological count data, including Mean Ceramic Date (MCD)
  • nimbleCarbon add on library for the nimble package for Bayesian Analyses of radiocarbon dates, including phase models and custom population growth growth models.

Tree-ring analysis / Dendrochronolohy

Evolution, phylogenetics, morphometrics, and shape analysis

  • The Phylogenetics task view provides more detailed coverage of the subject area and related functions within R.
  • Packages specifically tailored for the analysis of phylogenetic and evolutionary data include: ape, phytools, phangorn, Rphylip (requires PHYLIP), ouch, and pegas.
  • For plotting trees most of these packages include their own modifications of the base plot() function, and there are also ggtree, ggdendro, dendextend, and ggphylo
  • Morphometric and shape analysis methods are provided by shapes, geomorph, paleomorph and Momocs. Related packages include shapeR Anthropometry and Morpho.
  • StereoMorph allows users to collect 3D landmarks and curves from objects using two standard digital cameras.
  • cTransmission provides an Approximate Bayesian Computation Framework for inferring patterns of cultural transmission from frequency data

Image analysis

  • pixmap provides methods for creating, plotting and converting bitmapped images in three different formats: RGB, grey and indexed pixmaps. Similarly, jpeg provides an easy and simple way to read, write and display bitmap images stored in the JPEG format.
  • EBImage (requires ImageMagick) provides general purpose functionality for the reading, writing, processing and analysis of images (and is very well documented). Various functions for image processing and analysis can also be found in ripa and imager
  • magick provides bindings to the ImageMagick image-processing library, the most comprehensive open-source image processing package available.
  • iconr analysis of Prehistoric Iconography, considers any iconographic composition (‘decoration’) as a geometric graph of graphical units (GUs)
  • outlineR An R package to derive outline shapes from (multiple) artefacts on JPEG images

Simulations

  • NetLogoR provides fucntions to easily create agent-based models in R following the NetLogo framework
  • RNetLogo links R and NetLogo
  • simecol for simulating ecological (and other) dynamic systems. It can be used for differential equations, individual-based (or agent-based) and other models as well.
  • One-dimensional cellular automata are also possible to model with the package CellularAutomaton.

Network analysis

  • The two major packages are igraph, which is a generic network analysis and visualisation package, and sna, which performs social analysis of networks.
  • Other packages include statnet, intergraph, network (manipulates and displays network objects), ergm (a set of tools to analyze and simulate networks based on exponential random graph models exponential random graph models), hergm (implements hierarchical exponential random graph models), and RSiena (allows the analyses of the evolution of social networks using dynamic actor-oriented models)

Mortality Analysis

  • mortAAR Analysis of Archaeological Mortality Data

Skyscape Archaeology

  • skyscapeR Data reduction, visualization and analysis in skyscape archaeology, archaeoastronomy and cultural astronomy

Reproducible research

  • knitr enables R code and text with formatting instructions (eg. markdown or LaTeX) to be combined in a single document and executed to produce a document that contains rendered plots, analysed data and formatted text.
  • The targets package has functions that enable declarative workflows so that each time an analysis is run, it updates only the parts of the workflow that have changed.
  • renv supports the development of isolated, stand-alone R projects that include all the packages used and their dependencies.
  • rocker is a project that provides Docker containers to run R in a lightweight virtual environment, the hadleyverse container includes dplyr, ggplot2, etc., as well as RStudio server and LaTeX.

Writing Reproducible manuscripts

  • rrtools, is a package that provides instructions, templates, and functions for making a basic compendium suitable for writing reproducible research reports and articles with R.
  • The rticles package includes templates for converting markdown documents into PDF files formatted ready for submission for publication, such as in the PLOS journals, the Frontiers In journals, and Elsevier journals. Similarly, the papaja packge contains a template for converting a markdown file into an APA-formatted PDF. These packages depend on pandoc, a universal document format converter (not an R package). In this context it is used to convert rmarkdown or LaTeX to PDF, MS Word or HTML files. It is included with RStudio but can also be used stand-alone from the command line.
  • For making nice tables in documents: kableExtra, gt, flextable
  • The quarto package implements markdown document formatting language for scientific and technical publishing. Quarto documents are authored using markdown with R code blocks and inline code. It has all the usual scholarly accessories: citations, figures, tables, captions and cross-referencing.
  • RStudio is an integrated development environment that simplfies developing R code with numerous built-in conveniences, including vim board shortcuts. There are also packages that make scholarly writing in RStudio easy: wordcountaddin

Developing R code and packages

  • devtools (requires Rtools for Windows or Xcode for OSX) for easily creating R packages. usethis automates many tasks surrouding package-making.
  • Goodpractice gives advice about good practices when building R packages. Advice includes functions and syntax to avoid, package structure, code complexity, code formatting, etc.
  • roxygen2 for simplifying the creation of documentation for packages,
  • testthat for developing tests of functions in packages
  • Style guide for writing R code by Hadley Wickham. The lintr package analyses code to check that it conforms to Hadley Wickham's style guide (this package is built into RStudio)
  • Idioms of R are discussed in the vignette of the rockchalk package, and Pat Burn's essay the R Inferno.

Datasets

  • archdata contains eleven archaeological datasets from around the world reported in published studies. These represent typical forms of archaeological data (and so are useful for teaching)
  • binford contains more than 200 variables coding aspects of hunter-gatherer subsistence, mobility, and social organization for 339 ethnographically documented groups of hunter-gatherers, as used in Binford (2001) Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets
  • bioanth contains three osteometric datasets useful for biological and forensic anthropology.
  • BSDA contains a dataset of 60 radiocarbon ages of observations taken from an archaeological site with four phases of occupation.
  • cawd contains 15 datasets of ancient Greek, Roman and Persian maps and digital atlas data
  • chemometrics contains a dataset of elemental concentrations for 180 archaeological glass vessels excavated from 15th - 17th century contexts in Antwerp.
  • folio provides several types of data related to broad topics in archaeology (cultural evolution, radiocarbon dating, paleoenvironments, etc.), which can be used to illustrate statistical methods in the classroom (multivariate data analysis, compositional data analysis, diversity measurement, etc.).
  • neotoma is a package that facilitates access to the Neotoma Paleoecology Dataset which contains pollen and fossil data
  • zooaRch contains two zooarchaeological datasets.
  • gsloid Contains published data sets for global benthic d18O data for 0-5.3 Myr and global sea levels based on marine sediment core data for 0-800 ka
  • evoarchdata contains four published datasets widely used in archaeological studies of cultural evolution

Places to go for help

Related links:

Publications that include R code

Allison, James R. (2019). Ceramic Production and Exchange among the Virgin Anasazi, 30 Years Later, KIVA, 85:4, 289-312, http://doi.org/10.1080/00231940.2019.1689660

d'Alpoim Guedes J, Jin G, Bocinsky RK (2015). The Impact of Climate on the Spread of Rice to North-Eastern China: A New Look at the Data from Shandong Province. PLOS ONE 10(6): e0130430. doi: http://dx.doi.org/10.1371/journal.pone.0130430

d’Alpoim Guedes, Jade and R. Kyle Bocinsky. (2018). Climate change stimulated agricultural innovation and exchange across Asia, 2018. Science Advances 4:eaar4491. http://doi.org/10.1126/sciadv.aar4491

d’Alpoim Guedes, J., Hanson, S., Higham, C., Higham, T., & Lertcharnrit, T. (2019). The wet and the dry, the wild and the cultivated: Subsistence and risk management in ancient Central Thailand. Archaeological and Anthropological Sciences, 11(12), 6473–6484. https://doi.org/10.1007/s12520-019-00794-8

Angourakis, Andreas, Verònica Martínez Ferreras, Alexis Torrano, and Josep M. Gurt Esparraguera. (2018). “Presenting Multivariate Statistical Protocols in R Using Roman Wine Amphorae Productions in Catalonia, Spain.” Journal of Archaeological Science 93 (May): 150–65. https://doi.org/10.1016/j.jas.2018.03.007. Describes the cerUB pkg

Arroyo-Kalin, Manuel and Riris Philip (2021). Did pre-Columbian populations of the Amazonian biome reach carrying capacity during the Late Holocene? Philosophical Transactions of the Royal Society B: Biological Sciences B37620190715 http://doi.org/10.1098/rstb.2019.0715

Barr, W. A., Pobiner, B., Rowan, J., Du, A., & Faith, J. T. (2022). No sustained increase in zooarchaeological evidence for carnivory after the appearance of Homo erectus. Proceedings of the National Academy of Sciences, 119(5). https://doi.org/10.1073/pnas.2115540119

Bartholdy, B. P., & Henry, A. G. (2022). Investigating Biases Associated With Dietary Starch Incorporation and Retention With an Oral Biofilm Model. Frontiers in Earth Science. https://doi.org/10.3389/feart.2022.886512

Barton, C. M., Tortosa, J. E. A., Garcia-Puchol, O., Riel-Salvatore, J. G., Gauthier, N., Conesa, M. V., & Bouchard, G. P. (2017). Risk and resilience in the late glacial: A case study from the western Mediterranean. Quaternary Science Reviews. https://doi.org/10.1016/j.quascirev.2017.09.015

Beck, J., Gjesfjeld, E., & Chrisomalis, S. (2021). Prestige or Perish: Publishing Decisions in Academic Archaeology. American Antiquity, 86(4), 669-695. doi:10.1017/aaq.2021.64

Beck, J., & Smith, B. H. (2019). Don't throw the baby teeth out with the bathwater: Estimating subadult age using tooth wear in commingled archaeological assemblages. International Journal of Osteoarchaeology, 29(5), 831-842. https://doi.org/10.1002/oa.2802

Beheim, Bret A., and Adrian V. Bell. (2011). Inheritance, Ecology and the Evolution of the Canoes of East Oceania. Proceedings of the Royal Society B: Biological Sciences, February. https://doi.org/10.1098/rspb.2011.0060 https://github.com/babeheim/polynesian-canoe-analysis

Belmiro, J., Bicho, N., Haws, J., & Cascalheira, J. (2020). The Gravettian-Solutrean transition in westernmost Iberia: New data from the sites of Vale Boi and Lapa do Picareiro. Quaternary International https://doi.org/10.1016/j.quaint.2020.08.027 https://www.doi.org/10.17605/OSF.IO/456EG

Benjamin J, O’Leary M, McDonald J, Wiseman C, McCarthy J, Beckett E, et al. (2020). Aboriginal artefacts on the continental shelf reveal ancient drowned cultural landscapes in northwest Australia. PLoS ONE 15(7): e0233912. https://doi.org/10.1371/journal.pone.0233912 https://github.com/patrick-morrison/benjamin_et_al_2020_submerged_cb

Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S., & Stevens, C. (2017). Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proceedings of the National Academy of Sciences of the United States of America, 114(49), E10524–E10531. https://doi.org/10.1073/pnas.1709190114

Bevan A. and Crema E. R. (2021). Modifiable reporting unit problems and time series of long-term human activity. Philosophical Transactions of the Royal Society B: Biological Sciences B37620190726 http://doi.org/10.1098/rstb.2019.0726

Biagetti S, Alcaina-Mateos J, Ruiz-Giralt A, Lancelotti C, Groenewald P, Ibañez-Insa J, et al. (2021). Identifying anthropogenic features at Seoke (Botswana) using pXRF: Expanding the record of southern African Stone Walled Sites. PLoS ONE 16(5): e0250776. https://doi.org/10.1371/journal.pone.0250776

Biagetti, S., Alcaina-Mateos, J., Crema, E.R., (2016). A matter of ephemerality: the study of Kel Tadrart Tuareg (southwest Libya) campsites via quantitative spatial analysis. Ecology and Society 21. https://doi.org/10.5751/ES-08202-210142 GitHub repo.

Bicho, N. and Esteves, E. (2022). Pleistocene hunter-gatherer coastal adaptations in Atlantic Iberia. Frontiers in Earth Sciences 10:957214. https://doi.org/10.3389/feart.2022.957214

Bicho, N. and Cascalheira, J. (2018). The use of lithic assemblages for the definition of short-term occupations in hunter-gatherer prehistory. In Picin, A. and Cascalheira, J. (eds.) Short-term occupations in Paleolithic Archaeology. Interdisciplinary Contributions to Archaeology. Springer. https://doi.org/10.17605/OSF.IO/3WGSA

Bird, Darcy et al. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. Scientific Data 9(1): 27. https://doi.org/10.1038/s41597-022-01118-7

Bird, MI, SA Condie, S O’Connor, D O’Grady, C Reepmeyer, S Ulm, M Zega, F Saltré, CJA Bradshaw. (2019). Early human settlement of Sahul was not an accident. Scientific Reports doi:10.1038/s41598-019-42946-9 https://github.com/cjabradshaw/SahulHuman

Birch, T. and M. Martinón-Torres (2019). Shape as a measure of weapon standardisation: From metric to geometric morphometric analysis of the Iron Age ‘Havor’ lance from Southern Scandinavia. Journal of Archaeological Science 101: 34-51 https://doi.org/10.1016/j.jas.2018.11.002

Blinkhorn James, Timbrell Lucy, Grove Matt and Scerri Eleanor M. L. (2022). Evaluating refugia in recent human evolution in Africa Phil. Trans. R. Soc. B3772020048520200485

Blinkhorn, J., Groucutt, H.S., Scerri, E.M.L. et al. (2021). Directional changes in Levallois core technologies between Eastern Africa, Arabia, and the Levant during MIS 5. Scientific Reports 11, 11465 https://doi.org/10.1038/s41598-021-90744-z

Borck, L., Athenstädt, J.C., Cheromiah, L.A., Aragon, L.D., Brandes, U. and Hofman, C.L., (2020). Plainware and Polychrome: Quantifying Perceptual Differences in Ceramic Classification Between Diverse Groups to Further a Strong Objectivity. Journal of Computer Applications in Archaeology, 3(1), pp.135–150. DOI: http://doi.org/10.5334/jcaa.37

Bourgon, N., K. Jaouen, A-M. Bacon, et al. (2021). Trophic Ecology of a Late Pleistocene Early Modern Human from Tropical Southeast Asia Inferred from Zinc Isotopes. Journal of Human Evolution 161: 103075.

Bradshaw, C. J. A., Norman, K., Ulm, S., Williams, A. N., Clarkson, C., Chadœuf, J., Lin, S. C., Jacobs, Z., Roberts, R. G., Bird, M. I., Weyrich, L. S., Haberle, S. G., O’Connor, S., Llamas, B., Cohen, T. J., Friedrich, T., Veth, P., Leavesley, M., & Saltré, F. (2021). Stochastic models support rapid peopling of Late Pleistocene Sahul. Nature Communications, 12(1), 2440. https://doi.org/10.1038/s41467-021-21551-3

Bradshaw, CJA, S Ulm, AN Williams, MI Bird, RG Roberts, Z Jacobs, F Laviano, LS Weyrich, T Friedrich, K Norman, F Saltré. (2019). Minimum founding populations for the first peopling of Sahul. Nature Ecology and Evolution doi:10.1038/s41559-019-0902-6 https://github.com/cjabradshaw/SahulHuman

Breslawski RP, Etter BL, Jorgeson I, Boulanger MT (2018). The Atlatl to Bow Transition: What Can We Learn from Modern Recreational Competitions? Lithic Technology http://doi.org/10.1080/01977261.2017.1416918 https://github.com/taphocoenose/The-atlatl-to-bow-transition

Breslawski RP, Playford T (2017). Probabilistic Models of Seasonal Bison Exploitation Based on Fetal Prey Osteometry and Reproductive Phenology. Archaeological and Anthropological Sciences http://doi.org/10.1007/s12520-017-0500-y https://github.com/taphocoenose/Probabilistic-Models-of-Seasonal-Bison-Exploitation

Brown, A., & Crema, E. (2019). Maori Population Growth in Pre-contact New Zealand: regional population dynamics inferred from summed probability distributions of radiocarbon dates. The Journal of Island and Coastal Archaeology https://doi-org/10.1080/15564894.2019.1605429 https://zenodo.org/record/2250314

Brownlee, E. (2021). Grave Goods in Early Medieval Europe: regional variability and decline, Internet Archaeology 56. https://doi.org/10.11141/ia.56.11

Broughton, J. M., & Weitzel, E. M. (2018). Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nature communications, 9(1), 5441. https://doi.org/10.1038/s41467-018-07897-1

Brunner M, von Felten J, Hinz M, Hafner A (2020). Central European Early Bronze Age chronology revisited: A Bayesian examination of large-scale radiocarbon dating. PLOS ONE 15(12): e0243719. https://doi.org/10.1371/journal.pone.0243719

Bustos-Pérez, G., & Baena Preysler, J. (2022). Multiple approaches to predicting flake mass. Journal of Archaeological Science: Reports, 46, 103698. https://doi.org/10.1016/j.jasrep.2022.103698

Bustos-Pérez, G., Baena, J., (2021). Predicting Flake Mass: A View from Machine Learning. Lithic Technology 14. https://doi.org/10.1080/01977261.2021.1881267 https://doi.org/10.1080/01977261.2021.1881267

Calandra, I., Schunk, L., Bob, K., Gneisinger, W., Pedergnana, A., Paixao, E., ... & Marreiros, J. (2019). The effect of numerical aperture on quantitative use-wear studies and its implication on reproducibility. Scientific reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-42713-w

Calandra I., Schunk, L., Rodriguez, A., Gneisinger, W., Pedergnana, A., Paixao, E., Marreiros, J. (2019). Back to the edge: relative coordinate system for use-wear analysis. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-019-00801-y

Cardillo, M., & Charlin, J. (2018). Phylogenetic analysis of stemmed points from Patagonia: Shape change and morphospace evolution. Journal of Lithic Studies, 5(2). https://doi.org/10.2218/jls.2797 data & code: https://zenodo.org/record/4670467

Cardillo, Marcelo, Scartascini Federico Luis and Zangrando Atilio Francisco (2015). Combining morphological and metric variations in the study of design and functionality in stone weights. A comparative approach from continental and insular Patagonia, Argentina. Journal of Archaeological Science: Reports 4:578-587. https://doi.org/10.1016/j.jasrep.2015.10.030

Carleton, W. C. (2020). Evaluating Bayesian Radiocarbon‐dated Event Count (REC) models for the study of long‐term human and environmental processes. Journal of Quaternary Science https://doi.org/10.1002/jqs.3256

Carleton W. C., Groucutt HS. (2020). Sum things are not what they seem: Problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. The Holocene https://doi.org/10.1177/0959683620981700

Carleton, W. C. , J. Conolly, and G. Iannone (2012). A locally-adaptive model of archaeological potential (LAMAP) Journal of Archaeological Science 39(11), 3371-3385, 2012 https://doi.org/10.1016/j.jas.2012.05.022, https://github.com/wccarleton/lamap

Carleton, W., McCauley, B., Costopoulos, A., & Collard, M. (2018). An evolutionary agent-based model contradicts Dunnell’s version of the waste hypothesis for cultural elaboration. https://doi.org/10.31235/osf.io/2h36u https://github.com/wccarleton/abm_waste

Carney, M., Tushingham, S., McLaughlin, T., & d’Alpoim Guedes, J. (2021). Harvesting strategies as evidence for 4000 years of camas (Camassia quamash) management in the North American Columbia Plateau. Royal Society Open Science 8(4), 202213. https://doi.org/10.1098/rsos.202213 https://github.com/mollyrcarney/POV_camas_management

Carney, M. and Davies, B., (2020). Agent-Based Modeling, Scientific Reproducibility, and Taphonomy: A Successful Model Implementation Case Study. Journal of Computer Applications in Archaeology 3(1), pp.182–196. DOI: http://doi.org/10.5334/jcaa.52 https://zenodo.org/record/3761900

Carrer, F., Kossowski, T. M., Wilk, J., Pietrzak, M. B., & Bivand, R. S. (2021). The application of Local Indicators for Categorical Data (LICD) to explore spatial dependence in archaeological spaces. Journal of Archaeological Science, 126, 105306. https://doi.org/10.1016/j.jas.2020.105306

Carrero-Pazos, M. (2023). Análisis de patrones espaciales de puntos para el estudio de tendencias locacionales en distribuciones de yacimientos arqueológicos. Vegueta: Anuario de la Facultad de Geografía e Historia, 97–114. https://doi.org/10.51349/veg.2023.1.04

Carrero-Pazos, M., Bevan, A., & Lake, M. W. (2019). The spatial structure of Galician megalithic landscapes (NW iberia): A case study from the Monte Penide region. Journal of Archaeological Science, 108, 104968. https://doi.org/10.1016/j.jas.2019.05.004

Cascalheira, J., Gonçalves, C. and Maio D. (2020). The spatial patterning of Middle Paleolithic human settlement in westernmost Iberia. Journal of Quaternary Science https://doi.org/10.1002/jqs.3286

Cascalheira, João. (2019). Territoriality and the organization of technology during the Last Glacial Maximum in southwestern Europe. PloS one, 14(12). https://doi.org/10.1371/journal.pone.0225828

Chan, B, Francisco Gibaja J, García-Díaz V, Hoggard CS, Mazzucco N, Rowland JT, et al. (2020). Towards an understanding of retouch flakes: A use-wear blind test on knapped stone microdebitage. PLoS ONE 15(12): e0243101. https://doi.org/10.1371/journal.pone.0243101

Cheung, C., & Szpak, P. (2020). Interpreting Past Human Diets Using Stable Isotope Mixing Models. Journal of Archaeological Method and Theory. https://doi.org/10.1007/s10816-020-09492-5

Cheung, C., & Szpak, P. (2021). Interpreting Past Human Diets Using Stable Isotope Mixing Models—Best Practices for Data Acquisition. Journal of Archaeological Method and Theory. https://doi.org/10.1007/s10816-021-09514-w

Clarkson, C., Mike Smith, Ben Marwick, Richard Fullagar, Lynley A. Wallis, Patrick Faulkner, Tiina Manne, Elspeth Hayes, Richard G. Roberts, Zenobia Jacobs, Xavier Carah, Kelsey M. Lowe, Jacqueline Matthews, S. Anna Florin (2015). The archaeology, chronology and stratigraphy of Madjedbebe (Malakunanja II): A site in northern Australia with early occupation. Journal of Human Evolution 8, 46–64 http://dx.doi.org/10.1016/j.jhevol.2015.03.014

Cobos, V. A., Postillone, M. B., Bernal, V., & Perez, S. I. (2022). Spatio-temporal demographic dynamics of the human populations from Northwest Patagonia and central Chile during the Pleistocene-Holocene. Journal of Archaeological Science: Reports, 44, 103547. https://doi.org/10.1016/j.jasrep.2022.103547

Cochrane, E. E., Tautunu, A. A. M. M., & DiNapoli, R. J. (2019). Hypotheses to explain the few early coastal archaeological deposits in Sāmoa: Preliminary evaluations. Journal of Archaeological Science: Reports, 26, 101931. https://doi.org/10.17608/k6.auckland.7647218

Coco, E., & Iovita, R. (2020). Time-dependent taphonomic site loss leads to spatial averaging: implications for archaeological cultures. Humanities and Social Sciences Communications, 7(1), 1-9. https://www.nature.com/articles/s41599-020-00635-3

Coco, E., Holdaway, S. & Iovita, R. (2020). The Effects of Secondary Recycling on the Technological Character of Lithic Assemblages. Journal of Paleolithic Archaeology https://doi.org/10.1007/s41982-020-00055-4

Codding, B. F., Brenner Coltrain, J., Louderback, L., Vernon, K. B., Magargal, K. E., Yaworsky, P. M., Robinson, E., Brewer, S. C., & Spangler, J. D. (2022). Socioecological Dynamics Structuring the Spread of Farming in the North American Basin-Plateau Region. Environmental Archaeology, 27(4), 434–446. https://doi.org/10.1080/14614103.2021.1927480

Cole, K. E., Yaworsky, P. M., & Hart, I. A. (2022). Evaluating statistical models for establishing morphometric taxonomic identifications and a new approach using Random Forest. Journal of Archaeological Science 143, 105610. https://doi.org/10.1016/j.jas.2022.105610

Conrad, C., R. Shoocongdej, B. Marwick, et al. (2021). Re-Evaluating Pleistocene–Holocene Occupation of Cave Sites in North-West Thailand: New Radiocarbon and Luminescence Dating. Antiquity https://doi.org/10.15184/aqy.2021.44

Conrad, C., Higham, C., Eda, M. and Marwick, B. (2016). Paleoecology and Forager Subsistence Strategies During the Pleistocene-Holocene Transition: A Reinvestigation of the Zooarchaeological Assemblage from Spirit Cave, Mae Hong Son Province, Thailand. Asian Perspectives 55(1). https://github.com/cylerc/AP_SC

Contreras, Daniel A., Joël Guiot, Romain Suarez, and Alan Kirman. (2018). "Reaching The Human Scale: A Spatial and Temporal Downscaling Approach To The Archaeological Implications Of Paleoclimate Data." Journal of Archaeological Science 93:54-67.doi:10.1016/j.jas.2018.02.013

Contreras, Daniel A. and John Meadows. (2014). “Summed radiocarbon calibrations as a population proxy: a critical evaluation using a realistic simulation approach.” Journal of Archaeological Science 52:591-608. doi:10.1016/j.jas.2014.05.030

Coto-Sarmiento, M. & Rubio-Campillo, X. (2021). The tracing of trade: Exploring the patterns of olive oil production and distribution from Roman Baetica. Archaelogical and Anthropological Sciences,13,70. https://doi.org/10.1007/s12520-021-01305-4

Coto-Sarmiento, M., Rubio-Campillo, X., Remesal, J., (2018). Identifying social learning between Roman amphorae workshops through morphometric similarity. Journal of Archaeological Science 96, 117–123. https://doi.org/10.1016/j.jas.2018.06.002, https://github.com/Mcotsar/LearningBaetica

Courtenay, L.A., Herranz-Rodrigo, D., González-Aguilera, D. et al. (2021). Developments in data science solutions for carnivore tooth pit classification. Scientific Reports 11, 10209 https://doi.org/10.1038/s41598-021-89518-4

Cortell-Nicolau A, García-Puchol O, Barrera-Cruz M, García-Rivero D (2021). The spread of agriculture in Iberia through Approximate Bayesian Computation and Neolithic projectile tools. PLoS ONE 16(12): e0261813. doi:10.1371/journal.pone.0261813

Crawford, K., Huster, A., Peeples, M., Gauthier, N., Smith, M., Lobo, J., Lawrence, D. (2023). A systematic approach for studying the persistence of settlements in the past. Antiquity, 97(391), 213-230. https://doi.org/10.15184/aqy.2022.175

Crema, E. R., Stevens, C. J., & Shoda, S. (2022). Bayesian analyses of direct radiocarbon dates reveal geographic variations in the rate of rice farming dispersal in prehistoric Japan. Science Advances, 8(38), eadc9171. https://doi.org/10.1126/sciadv.adc9171

Crema, E. R. (2022). Statistical Inference of Prehistoric Demography from Frequency Distributions of Radiocarbon Dates: A Review and a Guide for the Perplexed. Journal of Archaeological Method Theory https://doi.org/10.1007/s10816-022-09559-5

Crema ER, Shoda S (2021). A Bayesian approach for fitting and comparing demographic growth models of radiocarbon dates: A case study on the Jomon-Yayoi transition in Kyushu (Japan). PLOS ONE 16(5): e0251695. https://doi.org/10.1371/journal.pone.0251695

Crema, E. R., and A. Bevan (2020). INFERENCE FROM LARGE SETS OF RADIOCARBON DATES: SOFTWARE AND METHODS. Radiocarbon :1–17. https://doi.org/10.1017/RDC.2020.95

Crema, E.R., Kandler, A., Shennan, S., (2016). Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions, Scientific Reports 6, 39122.

Crema, E. R., J. Habu, K. Kobayashi and M. Madella (2016). "Summed Probability Distribution of 14C Dates Suggests Regional Divergences in the Population Dynamics of the Jomon Period in Eastern Japan." PLoS ONE 11(4): e0154809., GitHub repo, Zenodo repo.

Crema, E.R., K. Edinborough, Giusti, D., Konidaris, G. E., Tourloukis, V., Marini, M., Maron, M., Zerboni, A., … Harvati, K. (2019). Recursive anisotropy: a spatial taphonomic study of the Early Pleistocene vertebrate assemblage of Tsiotra Vryssi, Mygdonia Basin, Greece. Boreas, 0(0). https://doi.org/10.1111/bor.12368T.

Crema, E.R., Kerig, S.J. Shennan (2014). An Approximate Bayesian Computation approach for inferring patterns of cultural evolutionary change, Journal of Archaeological Science, Volume 50 Pages 160-170 http://dx.doi.org/10.1016/j.jas.2014.07.014

Crema, E.R., Bevan, A., Shennan, S. (2017). Spatio-temporal approaches to archaeological radiocarbon dates. Journal of Archaeological Science 87, 1-9.https://github.com/ercrema/JAS2017_spatialSPD

Crema E.R. (2014). A simulation model of fission-fusion dynamics and long-term settlement change. Journal of Archaeological Method and Theory , 21, 385-404 https://github.com/ercrema/fissionfusion2014

Crema, E.R., Lake, M. (2015) Cultural Incubators and Spread of Innovation (2015), Human Biology, 87 (3), 151-168 https://github.com/ercrema/CulturalIncubatorSourceCodes

Crema, E.R., Kobayashi, K., (2020). A multi-proxy inference of Jōmon population dynamics using bayesian phase models, residential data, and summed probability distribution of 14C dates. Journal of Archaeological Science 117, 105136. https://doi.org/10.1016/j.jas.2020.105136 GitHub repo, Zenodo repo.

Cucart-Mora, C., Gómez-Puche, M., Romano, V. et al. (2022). Reconstructing Mesolithic social networks on the Iberian Peninsula using ornaments. Archaeological and Anthropological Sciences 14, 174. https://doi.org/10.1007/s12520-022-01641-z

Danielisová, A., Pajdla, P., Bursák, D., Strnad, L., Trubač, J. and Kmošek, J., (2021). Claiming the land or protecting the goods? The Duchcov hoard in Bohemia as a proxy for ‘Celtic migrations’ in Europe in the 4th century BCE. Journal of Archaeological Science 127, 105314. https://doi.org/10.1016/j.jas.2020.105314; GitHub repo.

Dapschauskas, R., Göden, M. B., Sommer, C., & Kandel, A. W. (2022). The Emergence of Habitual Ochre Use in Africa and its Significance for The Development of Ritual Behavior During The Middle Stone Age. Journal of World Prehistory, 35(3), 233–319. https://doi.org/10.1007/s10963-022-09170-2. Zenodo repo

Davis, D.S., G. Caspari, C. P. Lipo, and M. C. Sanger (2021). Deep Learning Reveals Extent of Archaic Native American Shell-Ring Building Practices. Journal of Archaeological Science 132: 105433. https://doi.org/10.1016/j.jas.2021.105433

Davis, D. S., Andriankaja, V., Carnat, T. L., Chrisostome, Z. M., Colombe, C., Fenomanana, F., Hubertine, L., Justome, R., Lahiniriko, F., Léonce, H., Manahira, G., Pierre, B. V., Roi, R., Soafiavy, P., Victorian, F., Voahirana, V., Manjakahery, B., & Douglass, K. (2020). Satellite-based remote sensing rapidly reveals extensive record of Holocene coastal settlement on Madagascar. Journal of Archaeological Science, 115, 105097. https://doi.org/10.1016/j.jas.2020.105097

Davis, D. S., DiNapoli, R. J., Sanger, M. C., & Lipo, C. P. (2020). The Integration of Lidar and Legacy Datasets Provides Improved Explanations for the Spatial Patterning of Shell Rings in the American Southeast. Advances in Archaeological Practice, 8(4), 361–375. https://doi.org/10.1017/aap.2020.18

Davis, D.S.; DiNapoli, R.J.; Douglass, K. (2020). Integrating Point Process Models, Evolutionary Ecology and Traditional Knowledge Improves Landscape Archaeology—A Case from Southwest Madagascar. Geosciences , 10, 287.

de la Peña P, Thomas M, Molefyane TR (2022). Particle size distribution: An experimental study using southern African reduction methods and raw materials. PLOS ONE 17(12): e0278867. https://doi.org/10.1371/journal.pone.0278867

Díaz-Rodríguez, M., & Fábregas-Valcarce, R. (2022). Evaluating the effectiveness of three spatial cluster analysis methods on Palaeolithic site location distributions in Galicia, NW Iberian Peninsula. Journal of Archaeological Science: Reports, 41, 103323. https://doi.org/10.1016/j.jasrep.2021.103323

DiNapoli, R. J., Crema, E. R., Lipo, C. P., Rieth, T. M., & Hunt, T. L. (2021). Approximate Bayesian Computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter Island). Nature Communications, 12(1), 3939. https://doi.org/10.1038/s41467-021-24252-z

DiNapoli, R. J., Rieth, T. M., Lipo, C. P., & Hunt, T. L. (2020). A model-based approach to the tempo of “collapse”: The case of Rapa Nui (Easter Island). Journal of Archaeological Science, 105094.

DiNapoli, R. J., Lipo, C. P., Brosnan, T., Hunt, T. L., Hixon, S., Morrison, A. E., & Becker, M. (2019). Rapa Nui (Easter Island) monument (ahu) locations explained by freshwater sources. PLOS ONE, 14(1), e0210409. https://doi.org/10.1371/journal.pone.0210409

Dolbunova, E., Lucquin, A., McLaughlin, T.R. et al. (2022) The transmission of pottery technology among prehistoric European hunter-gatherers. Nature Human Behavior https://doi.org/10.1038/s41562-022-01491-8

Dombrosky, Jonathan, Thomas F. Turner, Alexandra Harris, and Emily Lena Jones. (2022). “Body Size from Unconventional Specimens: A 3D Geometric Morphometrics Approach to Fishes from Ancestral Pueblo Contexts.” Journal of Archaeological Science 142: 105600.

Dombrosky, J. (2020). A ~1000-year 13C Suess correction model for the study of past ecosystems. The Holocene, 30(3), 474–478. https://doi.org/10.1177/0959683619887416

Dosseto, A,. and B. Marwick (2022). UThwigl — An R Package for Closed- and Open-System Uranium–Thorium Dating. Quaternary Geochronology 67: 101235 https://doi.org/10.1016/j.quageo.2021.101235

Drake BL, Wills WH, Hamilton MI, Dorshow W (2014). Strontium Isotopes and the Reconstruction of the Chaco Regional System: Evaluating Uncertainty with Bayesian Mixing Models. PLoS ONE 9(5): e95580. doi:10.1371/journal.pone.0095580

Drake, Brandon L., David T. Hanson, James L. Boone (2012). The use of radiocarbon-derived Δ13C as a paleoclimate indicator: applications in the Lower Alentejo of Portugal, Journal of Archaeological Science, Volume 39, Issue 9, September 2012, Pages 2888-2896, http://dx.doi.org/10.1016/j.jas.2012.04.027

Drake, Brandon L., (2012). The influence of climatic change on the Late Bronze Age Collapse and the Greek Dark Ages, Journal of Archaeological Science, Volume 39, Issue 6, June 2012, Pages 1862-1870 http://dx.doi.org/10.1016/j.jas.2012.01.029

Drake, Brandon L., WH Wills, and Erik B Erhardt (2012). The 5.1 ka aridization event, expansion of piñon-juniper woodlands, and the introduction of maize (Zea mays) in the American Southwest The Holocene December 2012 22: 1353-1360, first published on July 9, 2012 doi:10.1177/0959683612449758

Dye, Thomas S. (2011). “A Model-based Age Estimate for Polynesian Colonization of Hawai‘i”. Archaeology in Oceania 46, pp. 130–138 https://github.com/tsdye/hawaii-colonization

Dye, T. S. (2016). "Long-term rhythms in the development of Hawaiian social stratification." Journal of Archaeological Science http://www.sciencedirect.com/science/article/pii/S030544031630053X 71: 1-9.

Eberl, M., Bell, C., Spencer-Smith, J., Raj, M., Sarubbi, A., Johnson, P., McBride, M. (2023). Machine Learning–Based Identification of Lithic Microdebitage. Advances in Archaeological Practice, 1-12. http://doi.org/10.1017/aap.2022.35

Edinborough, K., Porčić, M., Martindale, A., Brown, T. J., Supernant, K., & Ames, K. M. (2017). Radiocarbon test for demographic events in written and oral history. Proceedings of the National Academy of Sciences, 114(47), 12436-12441. https://doi.org/10.1073/pnas.1713012114

Ellis, E.C., N. Gauthier, K. Klein Goldewijk, R. Bliege Bird, N. Boivin, S. Diaz, D. Fuller, J. Gill, J. Kaplan, N. Kingston, H. Locke, C. McMichael, D. Ranco, T. Rick, M.R. Shaw, L. Stephens, J.C. Svenning, J.E.M. Watson, (2021). People have shaped most of terrestrial nature for at least 12,000 years. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2023483118

Falcucci, A., Karakostis, F. A., Göldner, D., & Peresani, M. (2022). Bringing shape into focus: Assessing differences between blades and bladelets and their technological significance in 3D form. Journal of Archaeological Science: Reports, 43, 103490. https://doi.org/10.1016/j.jasrep.2022.103490

Falcucci, A., Karakostis, F. A., Göldner, D., & Peresani, M. (2022). Bringing shape into focus: Assessing differences between blades and bladelets and their technological significance in 3D form. Journal of Archaeological Science: Reports, 43, 103490. https://doi.org/10.1016/j.jasrep.2022.103490

Falcucci, A., & Peresani, M. (2022). The contribution of integrated 3D model analysis to Protoaurignacian stone tool design. PLOS ONE, 17(5), e0268539. https://doi.org/10.1371/journal.pone.0268539

Falótico, T., Valença, T., Verderane, M. P., & Fogaça, M. D. (2022). Stone tools differences across three capuchin monkey populations: Food’s physical properties, ecology, and culture. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-18661-3

Farahani, A. (2018). A 2500-year historical ecology of agricultural production under empire in Dhiban, Jordan. Journal of Anthropological Archaeology, 52, 137-155. http://dx.doi.org/10.17632/dygn8vp6pz.1

Field, S., Glowacki, D.M. & Gettler, L.T. (2022). The Importance of Energetics in Archaeological Least Cost Analysis. Journal of Archaeological Method and Theory https://doi.org/10.1007/s10816-022-09564-8

Fitzhugh, B., Brown, W. A., Misarti, N., Takase, K., & Tremayne, A. H. (2022). Human Paleodemography and Paleoecology of the North Pacific Rim from the Mid to Late Holocene. Quaternary Research 108, 123–149. https://doi.org/10.1017/qua.2022.35

Florin, S.A., Roberts, P., Marwick, B. et al. (2021). Pandanus nutshell generates a palaeoprecipitation record for human occupation at Madjedbebe, northern Australia. Nature Ecology and Evolution https://doi.org/10.1038/s41559-020-01379-8

Fontana, G., & Bernard, S. (2023). A new method for the energetics analysis of polygonal masonry in Samnite hillforts (Italy). Journal of Archaeological Science, 105730. https://doi.org/10.1016/j.jas.2023.105730

Freeman, J., Robinson, E., Beckman, N. G., Bird, D., Baggio, J. A., & Anderies, J. M. (2020). The global ecology of human population density and interpreting changes in paleo-population density. Journal of Archaeological Science, 120, 105168. https://github.com/people3k/JAS2020Ethnographic-Population-Density

Frederiks, P. L. (2022). Rekonstruktion einer übermoorten, prähistorischen Landschaft bei Wanna, Ldkr. Cuxhaven. Siedlungs- und Küstenforschung im südlichen Nordseegebiet 45, 43–100.

Gantley, M., Whitehouse, H., & Bogaard, A. (2018). Material Correlates Analysis (MCA): An Innovative way of Examining Questions in Archaeology Using Ethnographic Data. Advances in Archaeological Practice, 6(4), 328-341. http://doi.org/10.1017/aap.2018.9

Garland, N. (2021). TRAC at 30: A Bibliometric Analysis of the TRAC Community. Theoretical Roman Archaeology Journal, 4(1), Article 1. https://doi.org/10.16995/traj.4344

Garvey, Raven. (2018). Current and potential roles of archaeology in the development of cultural evolutionary theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1743), 20170057. https://doi.org/10.1098/rstb.2017.0057 https://dx.doi.org/10.6084/m9.figshare.c.3965853

Gauthier, Nicolas (2021). Hydroclimate variability influenced social interaction in the prehistoric american southwest. Frontiers in Earth Science 8:713. DOI:10.3389/feart.2020.620856.

Giomi, E., Mills, B. J., Aragon, L. D., Bellorado, B. A., & Peeples, M. A. (2021). Reading between the Lines: The Social Value of Dogoszhi Style in the Chaco World. American Antiquity, 1–24. https://doi.org/10.1017/aaq.2021.50

Giusti, D., Konidaris, G. E., Tourloukis, V., Marini, M., Maron, M., Zerboni, A., … Harvati, K. (2019). Recursive anisotropy: a spatial taphonomic study of the Early Pleistocene vertebrate assemblage of Tsiotra Vryssi, Mygdonia Basin, Greece. Boreas, 48(3), 713--730. https://doi.org/10.1111/bor.12368

Giusti, D., Tourloukis, V., Konidaris, G., Thompson, N., Karkanas, P., Panagopoulou, E., & Harvati, K. (2018). Beyond maps: patterns of formation processes at the Middle Pleistocene open-air site of Marathousa 1, Megalopolis Basin, Greece. Quaternary International 497, 137--153 https://doi.org/10.1016/j.quaint.2018.01.041

Giusti, D. and M. Arzarello, (2016). The need for a taphonomic perspective in spatial analysis: Formation processes at the Early Pleistocene site of Pirro Nord (P13), Apricena, Italy, Journal of Archaeological Science: Reports 8, 235--249 code and data: https://github.com/dncgst/pirronord_jas-reports

González-Molina I, Jiménez-García B, Maíllo-Fernández JM, Baquedano E, Domínguez-Rodrigo M (2020). Distinguishing Discoid and Centripetal Levallois methods through machine learning. PLOS ONE 15(12): e0244288. https://doi.org/10.1371/journal.pone.0244288 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/T8SEC2

Graham, S., Gupta, N., Smith, J., Angourakis, A., Reinhard, A., Ellenberger, K., Batist, Z., Rivard, J., Marwick, B., Carter, M., Compton, B., Blades, R., Wood, C., Nobles, G. (2019). The Open Digital Archaeology Textbook https://o-date.github.io/ Code notebooks and repositories, and text source at https://github.com/o-date

Gravel-Miguel, C., De Vynck, J., Wren, C. D., Murray, J. K., & Marean, C. W. (2022). Were prehistoric coastal sites more intensively occupied than inland sites? Using an agent-based model to understand the intensity of prehistoric coastal occupation, and what it means for studies on the evolution of the coastal adaptation. Quaternary International https://doi.org/10.1016/j.quaint.2022.02.003

Gravel-Miguel, C., Murray, J. K., Schoville, B. J., Wren, C. D., & Marean, C. W. (2021). Exploring variability in lithic armature discard in the archaeological record. Journal of Human Evolution, 155, 102981. https://doi.org/10.1016/j.jhevol.2021.102981

Groucutt, H. S., Carleton, W. C., Fenech, K., Gauci, R., Grima, R., Scerri, E. M. L., Stewart, M., & Vella, N. C. (2022). The 4.2 ka Event and the End of the Maltese “Temple Period.” Frontiers in Earth Science, 9, 1227. https://doi.org/10.3389/feart.2021.771683

Groucutt, H.S., White, T.S., Scerri, E.M.L. et al. (2021). Multiple hominin dispersals into Southwest Asia over the past 400,000 years. Nature https://doi.org/10.1038/s41586-021-03863-y https://doi.org/10.5281/zenodo.5082969

Hageneuer, S. & Schmidt, S. C. (2019). Monumentality by numbers. In: Buccellati, F., Hageneuer, S., van der Heyden, S. & Levenson, F. (Eds.), Size Matters - Understanding Monumentality Across Ancient Civilizations. Bielefeld: transcript Verlag: 291-308. https://doi.org/10.14361/9783839445389-017

Hatton A., Collins B, Schoville BJ, Wilkins J (2022). Ostrich eggshell beads from Ga-Mohana Hill North Rockshelter, southern Kalahari, and the implications for understanding social networks during Marine Isotope Stage 2. PLoS ONE 17(6): e0268943. http://doi.org/10.1371/journal.pone.0268943

Hausmann, N., Meredith-Williams, M., & Laurie, E. (2020). Shellfish resilience to prehistoric human consumption in the southern Red Sea: Variability in Conomurex fasciatus across time and space. Quaternary International. http://doi.org/10.1016/j.quaint.2020.04.034

Hecht, E.E., Pargeter, J., Khreisheh, N. et al. (2023). Neuroplasticity enables bio-cultural feedback in Paleolithic stone-tool making. Sci Rep 13, 2877 https://doi.org/10.1038/s41598-023-29994-y

Hegmon M, Peeples MA, on behalf of the LTVTP-NABO collaboration (2018). The human experience of social transformation: Insights from comparative archaeology. PLOS ONE 13(11): e0208060. https://doi.org/10.1371/journal.pone.0208060

Hermes, T. R., Schmid, C., Tabaldiev, K., & Motuzaite Matuzeviciute, G. (2022). Carbon and oxygen stable isotopic evidence for diverse sheep and goat husbandry strategies amid a Final Bronze Age farming milieu in the Kyrgyz Tian Shan. International Journal of Osteoarchaeology, 1– 12. https://doi.org/10.1002/oa.3103

Hewitt, Richard J., Francis F. Wenban-Smith, and Martin R. Bates. (2020). "Detecting Associations between Archaeological Site Distributions and Landscape Features: A Monte Carlo Simulation Approach for the R Environment" Geosciences 10, no. 9: 326. https://doi.org/10.3390/geosciences10090326

Hinz, Martin and Heitz, Caroline. (2022). "Unsupervised Classification of Neolithic Pottery From the Northern Alpine Space Using t-SNE and HDBSCAN" Open Archaeology, vol. 8, no. 1, , pp. 1183-1217. https://doi.org/10.1515/opar-2022-0274

Hinz, M., (2020). Sensitivity of Radiocarbon Sum Calibration. Journal of Computer Applications in Archaeology, 3(1), pp.238–252. DOI: http://doi.org/10.5334/jcaa.53

Hoggard, C. S., & Stade, C. M. (2019). The efficiency of Middle Palaeolithic technological blade strategies: an experimental investigation. Lithics–The Journal of the Lithic Studies Society, (39), 52. http://journal.lithics.org/index.php/lithics/article/view/737 https://osf.io/5v8xh/

Hoggard, C. S., McNabb, J., & Cole, J. N. (2019). The Application of Elliptic Fourier Analysis in Understanding Biface Shape and Symmetry Through the British Acheulean. Journal of Paleolithic Archaeology. https://doi.org/10.1007/s41982-019-00024-6 https://osf.io/td92j/

Horta, P., Bicho, N., & Cascalheira, J. (2022). Lithic bipolar methods as an adaptive strategy through space and time. Journal of Archaeological Science: Reports, 41, 103263.

Horta, P., Cascalheira, J., & Bicho, N. (2019). The Role of Lithic Bipolar Technology in Western Iberia’s Upper Paleolithic: the Case of Vale Boi (Southern Portugal). Journal of Paleolithic Archaeology https://doi.org/10.1007/s41982-019-0022-5 https://osf.io/wpxgh/

Hu, Y., Marwick, B., Zhang, J.-F., Rui, X., Hou, Y.-M., Yue, J.-P., ... Li, B. (2018). Late Middle Pleistocene Levallois stone-tool technology in southwest China. Nature https://doi.org/10.1038/s41586-018-0710-1 https://doi.org/10.17605/OSF.IO/ERNTJ

Huffer, D. and Graham, S. (2017). The Insta-Dead: the rhetoric of the human remains trade on Instagram, Internet Archaeology 45. https://doi.org/10.11141/ia.45.5, code & data: https://zenodo.org/record/546132

Huffer, D. and Graham, S. (2018). Fleshing Out the Bones: Studying the Human Remains Trade with Tensorflow and Inception, Journal of Computer Applications in Archaeology 1(1), pp.55-063. https://doi.org/10.5334/jcaa.8, code & data: https:doi.org/10.17605/OSF.IO/9CFJA

Ivanovaitė, L., Serwatka, K., Hoggard, C., Sauer, F., & Riede, F. (2020). All these Fantastic Cultures? Research History and Regionalization in the Late Palaeolithic Tanged Point Cultures of Eastern Europe. European Journal of Archeology, 23 (2), 162-185. doi:10.1017/eaa.2019.59 https://osf.io/agrwb/ https://github.com/CSHoggard/-Eastern-Europe-Tanged-Points

Kahn, J. G., Buffington, A., Escue, C., & Crabtree, S. A. (2022). Social and Ecological Factors Affect Long-Term Resilience of Voyaging Canoes in Pre-contact Eastern Polynesia: A Multiproxy Approach From the ArchaeoEcology Project. Frontiers in Ecology and Evolution, 9. https://www.frontiersin.org/article/10.3389/fevo.2021.750351

Kandler, A., Crema, E.R., (2019). Analysing Cultural Frequency Data: Neutral Theory and Beyond, in: Prentiss, A.M. (Ed.), Handbook of Evolutionary Research in Archaeology. Springer International Publishing, Cham, pp. 83–108. https://doi.org/10.1007/978-3-030-11117-5_5 GitHub repo

Kempf, M., & Günther, G. (2023). Point pattern and spatial analyses using archaeological and environmental data – A case study from the Neolithic Carpathian Basin. Journal of Archaeological Science: Reports, 47, 103747. https://doi.org/10.1016/j.jasrep.2022.103747

Kim, H., Lee, G.-A., & Crema, E. R. (2021). Bayesian analyses question the role of climate in Chulmun demography. Scientific Reports, 11(1), 23797. https://doi.org/10.1038/s41598-021-03180-4

King, C. L., Millard, A. R., Gröcke, D. R., Standen, V. G., Arriaza, B. T., & Halcrow, S. E. (2018). Marine resource reliance in the human populations of the Atacama Desert, northern Chile–A view from prehistory. Quaternary Science Reviews, 182, 163-174. https://doi.org/10.1016/j.quascirev.2017.12.009

Kintigh, K.W. and Peeples, M.A., (2020). Estimating Population Growth Rates and Instantaneous Population from Periodized Settlement Data. Journal of Computer Applications in Archaeology, 3(1), pp.197–209. DOI: http://doi.org/10.5334/jcaa.58 https://github.com/kintigh/RoomAccum

Kelmelis, Saige, and Sharon N. DeWitte. (2021). “Urban and Rural Survivorship in Pre- and Post-Black Death Denmark.” Journal of Archaeological Science: Reports 38: 103089.

Key, A, Ashton, N. (2022). Hominins likely occupied northern Europe before one million years ago. Evolutionary Anthropology 2022; 1- 16. http://doi.org/10.1002/evan.21966

Krzyzanska, M., Hunt, H.V., Crema, E.R. et al. (2021). Modelling the potential ecological niche of domesticated buckwheat in China: archaeological evidence, environmental constraints and climate change. Veget Hist Archaeobot https://doi.org/10.1007/s00334-021-00856-9

Lancelotti, C. (2018). Not all that burns is wood. A social perspective on fuel exploitation and use during the Indus urban period (2600-1900 BC). PLoS One 13(3): e0192364.

Lancelotti C, Ruiz-Pérez J, García-Granero JJ. (2017). Investigating fuel and fireplaces with a combination of phytoliths and multi-element analysis: an ethnographic experiment. Vegetation History and Archaeobotany 26:75-83.

Lancelotti C, Martinez-Sánchez R, Vera-Rodríguez JC, Pérez-Jordà G, Peña-Chocarro L, Biagetti S, Madella M. (2021). Phytolith analyses from Khil and Kaf Taht el-Ghar (Western Maghreb): Plant use trajectories in a long-term perspective. Journal of Archaeological Science: Reports, 37, 102921.

Lancelotti, C., Balbo, A.L. Madella, M., Iriarte, E., Rojo-Guerra, M., Ignacio Royo, J., Tejedor, C., Garrido, R., García, I., Arcusa, H., Pérez Jordà, G., Peña-Chocarro, L. (2014). The missing crop: investigating the use of grasses at Els Trocs, a Neolithic cave site in the Pyrenees (1564 m asl). Journal of Archaeological Science 42: 456-466.

Lawrence D, Palmisano A, de Gruchy MW (2021). Collapse and continuity: A multi-proxy reconstruction of settlement organization and population trajectories in the Northern Fertile Crescent during the 4.2kya Rapid Climate Change event. PLoS ONE 16(1): e0244871. doi:10.1371/journal.pone.0244871

Leggett, S. (2022). A Hierarchical Meta-Analytical Approach to Western European Dietary Transitions in the First Millennium AD. European Journal of Archaeology, 1-21. https://doi.org/10.1017/eaa.2022.23

Leggett, S. (2021). Migration and cultural integration in the early medieval cemetery of Finglesham, Kent, through stable isotopes. Archaeol Anthropol Sci 13, 1. https://doi.org/10.1007/s12520-021-01429-7

Leplongeon, Alice, Clément Ménard, Vincent Bonhomme, and Eugenio Bortolini. (2020). “Backed Pieces and Their Variability in the Later Stone Age of the Horn of Africa.” African Archaeological Review. https://doi.org/10.1007/s10437-020-09401-x https://doi.org/10.6084/m9.figshare.7825607

Lewis, J. (2022). 2nd c. CE defenses around small towns in Roman Britain structured by road network connectivity. Journal of Roman Archaeology, 1–12. https://doi.org/10.1017/S1047759421000775

Lewis, J. (2021). Probabilistic Modelling for Incorporating Uncertainty in Least Cost Path Results: A Postdictive Roman Road Case Study. Journal of Archaeological Method and Theory https://doi.org/10.1007/s10816-021-09522-w

Lewis, J. (2020). Visibility of the Gask Ridge road from simulated Watchtowers: A Monte Carlo testing approach. Journal of Archaeological Science: Reports, 33, 102482. https://doi.org/10.1016/j.jasrep.2020.102482

Lightfoot E and O'Connell TC (2016). “On The Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations.” PLoS ONE 11(4). http://doi:10.1371/journal.pone.0153850, code and data: https://www.repository.cam.ac.uk/handle/1810/252773

Li, L., Reeves, J.S., Lin, S.C. et al. (2022). Quantifying knapping actions: a method for measuring the angle of blow on flakes. Archaeological and Anthropological Sciences 14, 156 https://doi.org/10.1007/s12520-022-01626-y

Lin, S.C., White, L.T., Jatmiko et al. (2022). Characterising the stone artefact raw materials at Liang Bua, Indonesia. J Paleo Arch 5, 22. https://doi.org/10.1007/s41982-022-00133-9

Lin SC, Rezek Z, Abdolahzadeh A, Braun DR, Dogandžić T, Leader GM, et al. (2022). The mediating effect of platform width on the size and shape of stone flakes. PLoS ONE 17(1): e0262920. doi:10.1371/journal.pone.0262920

Lipo, C. P., Hunt, T. L., Horneman, R., & Bonhomme, V. (2016). Weapons of war? Rapa Nui mata’a morphometric analyses. Antiquity, 90(349), 172–187. doi:10.15184/aqy.2015.189 https://github.com/clipo/mataaMorphometrics

Llorente-Rodríguez, L., Craig, O. E., Colonese, A. C., von Tersch, M., Roselló-Izquierdo, E., González Gómez de Agüero, E., Fernández-Rodríguez, C., Quirós-Castillo, J. A., López-Arias, B., Marlasca-Martín, R., Nottingham, J., & Morales Muñiz, A. (2022). Elucidating historical fisheries’ networks in the Iberian Peninsula using stable isotopes. Fish and Fisheries, 00, 1– 12. https://doi.org/10.1111/faf.12655

Lombao, D., Rabuñal, J.R., Morales, J.I. et al. (2022). The Technological Behaviours of Homo antecessor: Core Management and Reduction Intensity at Gran Dolina-TD6.2 (Atapuerca, Spain). Journal of Archaeological Method and Theory https://doi.org/10.1007/s10816-022-09579-1

Lowe, K., Wallis, L., Pardoe, C., Marwick, B., Clarkson, C., Manne, T., Smith, M. and R. Fullagar (2014). Ground-penetrating radar and burial practices in western Arnhem Land, Australia. Archaeology in Oceania 49(3): 148–157 http://onlinelibrary.wiley.com/doi/10.1002/arco.5039/abstract

Mackay, Alex, Sam C. Lin, Lachlan S. Kenna, and Alex F. Blackwood. (2018). Variance in the Response of Silcrete to Rapid Heating Complicates Assumptions about Past Heat Treatment Methods.” Archaeological and Anthropological Sciences, June 20, 2018, 1–12. https://doi.org/10.1007/s12520-018-0663-1.

Mackay A, Sumner A, Jacobs Z, Marwick B, Bluff K and Shaw M (2014). Putslaagte 1 (PL1), the Doring River, and the later Middle Stone Age in southern Africa's Winter Rainfall Zone. Quaternary International http://dx.doi.org/10.1016/j.quaint.2014.05.007

Marwick, B., Wang, L.-Y., Robinson, R., & Loiselle, H. (2019). How to Use Replication Assignments for Teaching Integrity in Empirical Archaeology. Advances in Archaeological Practice, 1–9. https://doi.org/10.1017/aap.2019.38

Marwick, B., Hiscock, P., Sullivan, M., & Hughes, P. (2017). Landform boundary effects on Holocene forager landscape use in arid South Australia. Journal of Archaeological Science: Reports http://doi.org/10.1016/j.jasrep.2017.07.004

Marwick, Ben, Elspeth Hayes, Chris Clarkson and Richard Fullagar (2017). Movement of lithics by trampling: An experiment in the Madjedbebe sediments, northern Australia. Journal of Archaeological Science 79:73-85. http://dx.doi.org/10.1016/j.jas.2017.01.008, https://github.com/benmarwick/mjbtramp, http://dx.doi.org/10.17605/OSF.IO/32A87

Marwick, B., Van Vlack, H.G., Conrad, C., Shoocongdej, R., Thongcharoenchaikit, C., Kwak, S. (2016). Adaptations to sea level change and transitions to agriculture at Khao Toh Chong rockshelter, Peninsular Thailand, Journal of Archaeological Science http://dx.doi.org/10.1016/j.jas.2016.10.010, https://github.com/benmarwick/ktc11, https://osf.io/axxf8/

Marwick, B, C. Clarkson, S. O'Connor & S. Collins (2016). "Pleistocene-aged stone artefacts from Jerimalai, East Timor: Long term conservatism in early modern human technology in island Southeast Asia" Journal of Human Evolution DOI: http://doi.org/10.1016/j.jhevol.2016.09.004, https://github.com/benmarwick/Pleistocene-aged-stone-artefacts-from-Jerimalai--East-Timor, https://osf.io/63zey

Marwick, B., & Birch, S. (2018). A Standard for the Scholarly Citation of Archaeological Data as an Incentive to Data Sharing. Advances in Archaeological Practice 1-19 https://doi.org/10.1017/aap.2018.3

Marwick, B. (2017). Computational reproducibility in archaeological research: Basic principles and a case study of their implementation. Journal of Archaeological Method and Theory 1-27. doi: 10.1007/s10816-015-9272-9, text source repo

Marwick, B., (2013). Multiple Optima in Hoabinhian flaked stone artefact palaeoeconomics and palaeoecology at two archaeological sites in Northwest Thailand. Journal of Anthropological Archaeology 32, 553-564. http://dx.doi.org/10.1016/j.jaa.2013.08.004

Marwick, B. (2013). Discovery of Emergent Issues and Controversies in Anthropology Using Text Mining, Topic Modeling, and Social Network Analysis of Microblog Content. In Yanchang Zhao, Yonghua Cen (eds) Data Mining Applications with R Elsevier. p. 63-93 https://github.com/benmarwick/AAA2011-Tweets

Matzig, D.N., Hussain, S.T. & Riede, F. (2021). Design Space Constraints and the Cultural Taxonomy of European Final Palaeolithic Large Tanged Points: A Comparison of Typological, Landmark-Based and Whole-Outline Geometric Morphometric Approaches. J Paleo Arch 4, 27 (2021). https://doi.org/10.1007/s41982-021-00097-2

McCool, W. C., Codding, B. F., Vernon, K. B., Wilson, K. M., Yaworsky, P. M., Marwan, N., & Kennett, D. J. (2022). Climate change–induced population pressure drives high rates of lethal violence in the Prehispanic central Andes. Proceedings of the National Academy of Sciences, 119(17), e2117556119. https://doi.org/10.1073/pnas.2117556119

McLaughlin, T. Rowan, Gómez-Puche Magdalena, Cascalheira João, Bicho Nuno and Fernández-López de Pablo Javier (2021). Late Glacial and Early Holocene human demographic responses to climatic and environmental change in Atlantic Iberia Philosophical Transactions of the Royal Society B: Biological Sciences B37620190724 http://doi.org/10.1098/rstb.2019.0724

McLaughlin, T.R. (2018). On Applications of Space–Time Modelling with Open-Source 14C Age Calibration. Journal of Archaeological Method and Theory https://doi.org/10.1007/s10816-018-9381-3

McLean, A., & Rubio-Campillo, X. (2022). Beyond Least Cost Paths: Circuit theory, maritime mobility and patterns of urbanism in the Roman Adriatic. Journal of Archaeological Science, 138, 105534. https://doi.org/10.1016/j.jas.2021.105534

McMillan, R., Waber, N., Ritchie, M., & Frahm, E. (2022). Introducing SourceXplorer, an open-source statistical tool for guided lithic sourcing. Journal of Archaeological Science, 144, 105626. https://doi.org/10.1016/j.jas.2022.105626

McPherron, Shannon P., Will Archer, Erik R. Otárola-Castillo, Melissa G. Torquato, and Trevor L. Keevil (2021). Machine Learning, Bootstrapping, Null Models, and Why We Are Still Not 100% Sure Which Bone Surface Modifications Were Made by Crocodiles. Journal of Human Evolution 103071. https://doi.org/10.1016/j.jhevol.2021.103071

McPherron, S. P., Abdolahzadeh, A., Archer, W., Chan, A., Djakovic, I., Dogandžić, T., ... & Reeves, J. (2020). Introducing platform surface interior angle (PSIA) and its role in flake formation, size and shape. Plos one, 15(11), e0241714. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241714

McPherron SP (2018). Additional statistical and graphical methods for analyzing site formation esses using artifact orientations. PLOS ONE 13(1): e0190195. https://doi.org/10.1371/journal.pone.0190195

Miller, J.M., Wang, Y.V. (2021). Ostrich eggshell beads reveal 50,000-year-old social network in Africa. Nature https://doi.org/10.1038/s41586-021-04227-2

Motes-Rodrigo A, McPherron SP, Archer W, Hernandez-Aguilar RA, Tennie C (2022). Experimental investigation of orangutans’ lithic percussive and sharp stone tool behaviours. PLoS ONE 17(2): e0263343. https://doi.org/10.1371/journal.pone.0263343

Nakagawa, T., Kohei Tamura, Yuji Yamaguchi, Naoko Matsumoto, Takehiko Matsugi, Hisashi Nakao, (2021). Population pressure and prehistoric violence in the Yayoi period of Japan, Journal of Archaeological Science, Volume 132, 2021, 105420, https://doi.org/10.1016/j.jas.2021.105420 https://github.com/tmr-kohei/nakagawa2021

Nakoinz, O., D. Knitter (2016). Modelling Human Behaviour in Landscapes. Basic Concepts and Modelling Elements. Quantitative Archaeology and Archaeological Modelling 1. Springer, New York. https://github.com/dakni/mhbil, https://github.com/ISAAKiel

Negre, J., Muñoz, F., & Barceló, J. A. (2017). A Cost-Based Ripley’s K Function to Assess Social Strategies in Settlement Patterning. Journal of Archaeological Method and Theory, 1-18. https://doi.org/10.1007/s10816-017-9358-7

Negre, J., Muñoz, F., Lancelotti, C., (2016). Geostatistical modelling of chemical residues on archaeological floors in the presence of barriers, Journal of Archaeological Science 70, 91-101. https://github.com/famuvie/ArchaeologicalFloors

Nishiaki, Y., Tamura, K., Suzuki, M., Nakamura, M., Kato, S., Nakagawa, K., Takakura, J., Yamaoka, T., Noguchi, A., Kondo, Y., & Kobayashi, Y. (2021). Spatiotemporal variability in lithic technology of Middle-to-Upper Paleolithic Asia: A new dataset and its statistical analyses. Quaternary International. https://doi.org/10.1016/j.quaint.2021.03.022

Nørtoft, M., (2022). A New Framework for Quantifying Prehistoric Grave Wealth. Journal of Computer Applications in Archaeology, 5(1), pp.123–139. http://doi.org/10.5334/jcaa.86

Ordonez, A., Riede, F. (2022). Changes in limiting factors for forager population dynamics in Europe across the last glacial-interglacial transition. Nature Communications 13, 5140 https://doi.org/10.1038/s41467-022-32750-x

Otárola-Castillo, E., Torquato, M., Wolfhagen, J., Hill, M., & Buck, C. (2022). Beyond Chronology, Using Bayesian Inference to Evaluate Hypotheses in Archaeology. Advances in Archaeological Practice, 1-17. https://doi.org/10.1017/aap.2022.10

Orton, D., Gaastra, J., & Vander Linden, M. (2016). Between the Danube and the Deep Blue Sea: Zooarchaeological Meta-Analysis Reveals Variability in the Spread and Development of Neolithic Farming across the Western Balkans. Open Quaternary, 2, 6. DOI: http://doi.org/10.5334/oq.28 data & code: http://eprints.whiterose.ac.uk/104121/

Pardo-Gordó, S., Aubán, J. B., Jiménez-Puerto, J., Armero, C., & García-Donato, G. (2022). The chronology of archaeological assemblages based on an automatic Bayesian procedure: Eastern Iberia as study case. Journal of Archaeological Science, 139(105555), 105555. https://doi.org/10.1016/j.jas.2022.105555

Paixão, E., Marreiros, J., Dubreuil, L., Gneisinger, W., Carver, G., Prévost, M., & Zaidner, Y. (2021). The Middle Paleolithic ground stones tools of Nesher Ramla unit V (Southern Levant): A multi-scale use-wear approach for assessing the assemblage functional variability. Quaternary International. https://doi.org/10.1016/j.quaint.2021.06.009

Pajdla, P., (2023). Spatial Patterns and Grave Goods Differences at the Cemetery of Vedrovice (Czech Republic): A Resampling Approach to Identity Markers in the Early Neolithic. Journal of Computer Applications in Archaeology, 6(1), pp.1–15. http://doi.org/10.5334/jcaa.85

Palmisano, A. (2017). Confronting scales of settlement hierarchy in state-level societies: Upper Mesopotamia and Central Anatolia in the Middle Bronze Age. Journal of Archaeological Science: Reports, 14, 220-240. https://doi.org/10.1016/j.jasrep.2017.05.029

Palmisano, A., Bevan, A., & Shennan, S. (2017). Comparing archaeological proxies for long-term population patterns: An example from central Italy. Journal of Archaeological Science, 87, 59-72. https://doi.org/10.1016/j.jas.2017.10.001

Palmisano, A., Lawrence, D., de Gruchy, M. W., Bevan, A., & Shennan, S. (2021). Holocene regional population dynamics and climatic trends in the Near East: A first comparison using archaeo-demographic proxies. Quaternary Science Reviews, 252, 106739. https://doi.org/10.1016/j.quascirev.2020.106739

Palmisano, A., Bevan, A., Kabelindde, A. et al. (2021). Long-Term Demographic Trends in Prehistoric Italy: Climate Impacts and Regionalised Socio-Ecological Trajectories. Journal of World Prehistory https://doi.org/10.1007/s10963-021-09159-3

Pargeter, J., Liu, C., Kilgore, M. B., Majoe, A., & Stout, D. (2022). Testing the Effect of Learning Conditions and Individual Motor/Cognitive Differences on Knapping Skill Acquisition. Journal of Archaeological Method and Theory. https://doi.org/10.1007/s10816-022-09592-4

Park, G., Wang, L., & Marwick, B. (2022). How do archaeologists write about racism? Computational text analysis of 41 years of Society for American Archaeology annual meeting abstracts. Antiquity, 1-14. doi:10.15184/aqy.2021.181

Park, G. & B. Marwick (2022). How did the introduction of stemmed points affect mobility and site occupation during the late Pleistocene in Korea? Quaternary Science Reviews, 277, 107312.

Parkinson, E.W., McLaughlin, T.R., Esposito, C. et al. (2021). Radiocarbon Dated Trends and Central Mediterranean Prehistory. J World Prehist. https://doi.org/10.1007/s10963-021-09158-4

Pargeter, J., Chen, C., Buchanan, B., Fisch, M., Bebber, M., & Eren, M. I. (2022). Stone tool backing and adhesion in hunting weaponry: First results of an experimental program. Journal of Archaeological Science: Reports, 45, 103639. https://doi.org/10.1016/j.jasrep.2022.103639

Pargeter, Justin, Paloma de la Peña, and Metin I. Eren. (2018). “Assessing Raw Material’s Role in Bipolar and Freehand Miniaturized Flake Shape, Technological Structure, and Fragmentation Rates.” Archaeological and Anthropological Sciences, May, 1–15. https://doi.org/10.1007/s12520-018-0647-1 data & code: https://osf.io/38tsn/

Pargeter, J., Khreisheh, N., & Stout, D. (2019). Understanding stone tool-making skill acquisition: Experimental methods and evolutionary implications. Journal of Human Evolution, 133, 146-166. https://osf.io/h5c8t/

Pedergnana, A., Calandra, I., Bob, K., Gneisinger, W., Paixão, E., Schunk, L., Hildebrandt, A., & Marreiros, J. (2020). Evaluating the microscopic effect of brushing stone tools as a cleaning procedure. Quaternary International, 569–570, 263–276. https://doi.org/10.1016/j.quaint.2020.06.031

Pedergnana, A., Calandra, I., Evans, A. A., Bob, K., Hildebrandt, A., & Ollé, A. (2020). Polish is quantitatively different on quartzite flakes used on different worked materials. PLOS ONE, 15(12), e0243295. https://doi.org/10.1371/journal.pone.0243295

Pedersen, Jesper B., Martin E. Poulsen and Felix Riede (2022). Jels 3, a New Late Palaeolithic Open-Air Site in Denmark, Sheds Light on the Pioneer Colonization of Northern Europe, Journal of Field Archaeology https://doi.org/10.1080/00934690.2022.2086346

Pederzani, Sarah, Kate Britton, Vera Aldeias, et al. (2021). Subarctic Climate for the Earliest Homo Sapiens in Europe. Science Advances 7(39). https://doi.org/10.1126/sciadv.abi4642

Pederzani, S., Aldeias, V., Dibble, H.L. et al. (2021). Reconstructing Late Pleistocene paleoclimate at the scale of human behavior: an example from the Neandertal occupation of La Ferrassie (France). Scientific Reports 11, 1419 https://doi.org/10.1038/s41598-020-80777-1

Perri et al (2019). Dietary variation among indigenous Nicaraguan horticulturalists and their dogs: An ethnoarchaeological application of the Canine Surrogacy Approach Journal of Anthropological Archaeology Volume 55,https://doi.org/10.1016/j.jaa.2019.05.002 https://osf.io/dbxe9/

Pestle WJ, Hubbell C, Hubbe M (2021). (DIGSS) Determination of Intervals using Georeferenced Survey Simulation: An R package for subsurface survey. PLoS ONE 16(9): e0257386. doi:10.1371/journal.pone.0257386

Phillips, D., Wearing, H., & Clark, J. (2018). VILLAGE GROWTH, EMERGING INFECTIOUS DISEASE, AND THE END OF THE NEOLITHIC DEMOGRAPHIC TRANSITION IN THE SOUTHWEST UNITED STATES AND NORTHWEST MEXICO. American Antiquity, 83(2), 263-280. doi:10.1017/aaq.2018.3

Phillips, N., Pargeter, J., Low, M. et al. (2018). Open-air preservation of miniaturised lithics: experimental research in the Cederberg Mountains, southern Africa. Archaeological and Anthropological Sciences (2018). https://doi.org/10.1007/s12520-018-0617-7

Plutniak, S., Asftolfo Araujo, Bambang Sugiyanto, Adhi Agus Oktaviana, Jean-Michel Chazine & François-Xavier Ricaut (2022). Mainland-coastal interactions in East Borneo: Inter-site comparison and Bayesian chronological models of two Late Pleistocene–Holocene sequences (Liang Abu and Kimanis rock shelters), The Journal of Island and Coastal Archaeology, http://doi.org/10.1080/15564894.2022.2108947

Plutniak, Sébastien (2021). The Strength of Parthood Ties. Modelling Spatial Units and Fragmented Objects with the TSAR Method — Topological Study of Archaeological Refitting. Journal of Archaeological Science 136: 105501. https://doi.org/10.1016/j.jas.2021.105501

Pollard, D. (2021). All equal in the presence of death? A quantitative analysis of the Early Iron Age cemeteries of Knossos, Crete, Journal of Anthropological Archaeology, Volume 63, 2021, 101320,

Pop, CM, Wilson, L, Browne, CL. (2022). Evaluating landscape knowledge and lithic resource selection at the French Middle Paleolithic site of the Bau de l'Aubesier. Journal of Human Evolution. 2022 Mar 23;166:103152. doi: 10.1016/j.jhevol.20

Porčić, Marko, Blagojević Tamara, Pendić Jugoslav and Stefanović Sofija (2021). The Neolithic Demographic Transition in the Central Balkans: population dynamics reconstruction based on new radiocarbon evidence Philosophical Transactions of the Royal Society B: Biological Sciences B37620190712 http://doi.org/10.1098/rstb.2019.0712

Porčić, M., Blagojević, T., Pendić, J., & Stefanović, S. (2020). The timing and tempo of the Neolithic expansion across the Central Balkans in the light of the new radiocarbon evidence. Journal of Archaeological Science: Reports, 33, 102528. https://doi.org/10.1016/j.jasrep.2020.102528

Porčić, M., Nikolić, M., (2016). The Approximate Bayesian Computation approach to reconstructing population dynamics and size from settlement data: demography of the Mesolithic-Neolithic transition at Lepenski Vir. AArchaeological and Anthropological Sciences 8, 169–186. https://doi.org/10.1007/s12520-014-0223-2

Potì, A., Kehl, M., Broich, M., Carrión Marco, Y., Hutterer, R., Jentke, T., Linstädter, J., López-Sáez, J.A., Mikdad, A., Morales, J., Pérez-Díaz, S., Portillo, M., Schmid, C., Vidal-Matutano, P., Weniger, G.-C., (2019). Human occupation and environmental change in the western Maghreb during the Last Glacial Maximum (LGM) and the Late Glacial. New evidence from the Iberomaurusian site Ifri El Baroud (northeast Morocco). Quaternary Science Reviews 220, 87–110. https://doi.org/10.1016/j.quascirev.2019.07.013

Pozo, J. M., Trentacoste, A., Nieto-Espinet, A., Guimarães, S., & Valenzuela-Lamas, S. (2022). zoolog R package: Zooarchaeological analysis with log-ratios. Quaternary International. https://doi.org/10.1016/j.quaint.2022.11.006

Prates, L., Perez, S.I. (2021). Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population. Nature Communications 12, 2175 https://doi.org/10.1038/s41467-021-22506-4

Prentiss, A.M., Edinborough, K., Crema, E. R., Kuijt, I., Goodale, N., Ryan, E., et al. (2022). Divergent population dynamics in the middle to late Holocene lower Fraser valley and mid-Fraser canyon, British Columbia. Journal of Archaeological Science: Reports, 44, 103512. https://doi.org/10.1016/j.jasrep.2022.103512

Price, Michael Holton, José M. Capriles, Julie A. Hoggarth, et al. (2021). End-to-End Bayesian Analysis for Summarizing Sets of Radiocarbon Dates. Journal of Archaeological Science 135: 105473. https://doi.org/10.1016/j.jas.2021.105473

Price, M. D., Wolfhagen, J., and Otárola-Castillo, E. (2016). Confidence Intervals in the Analysis of Mortality and Survivorship Curves in Zooarchaeology. American Antiquity 81(1): 157-73. https://doi.org/10.7183/0002-7316.81.1.157

Reese, K. M. (2021). Deep learning artificial neural networks for non-destructive archaeological site dating, Journal of Archaeological Science, Volume 132, 2021,105413,

Reese, K. M. (2020). Check dam agriculture on the mesa verde cuesta. Journal of Archaeological Science: Reports, 31, 102372.

Reese, K., Glowacki, D., & Kohler, T. (2019). Dynamic Communities on the Mesa Verde Cuesta. American Antiquity, 84(4), 728-747. doi:10.1017/aaq.2019.74

Reeves, J. S., McPherron, S. P., Aldeias, V., Dibble, H. L., Goldberg, P., Sandgathe, D., & Turq, A. (2019). Measuring spatial structure in time-averaged deposits insights from Roc de Marsal, France. Archaeological and Anthropological Sciences. https://doi.org/10.1007/s12520-019-00871-y

Reidsma, F. H., Sifogeorgaki, I., Dinckal, A., Huisman, H., Sier, M. J., van Os, B., & Dusseldorp, G. L. (2021). Making the Invisible Stratigraphy Visible: A Grid-Based, Multi-Proxy Geoarchaeological Study of Umhlatuzana Rockshelter, South Africa. Frontiers in Earth Science, 9. https://www.frontiersin.org/article/10.3389/feart.2021.664105

Reynolds, N., & Green, C. (2019). Spatiotemporal modelling of radiocarbon dates using linear regression does not indicate a vector of demic dispersal associated with the earliest Gravettian assemblages in Europe. Journal of Archaeological Science: Reports, 27, 101958. https://doi.org/10.1016/j.jasrep.2019.101958

Reynolds, N., Germonpré, M., Bessudnov, A. A., & Sablin, M. V. (2019). The Late Gravettian Site of Kostënki 21 Layer III, Russia: a Chronocultural Reassessment Based on a New Interpretation of the Significance of Intra-site Spatial Patterning. Journal of Paleolithic Archaeology. https://doi.org/10.1007/s41982-018-0018-6

Režek, Ž., Dibble, H.L., McPherron, S.P., Braun, D.R., Lin, S.C., (2018). Two million years of flaking stone and the evolutionary efficiency of stone tool technology. Nature Ecology & Evolution 1.https://doi.org/10.1038/s41559-018-0488-4, https://doi.org/10.5281/zenodo.1194711

Riede, F., Lew-Levy, S., Johannsen, N. N., Lavi, N., & Andersen, M. M. (2022). Toys as Teachers: A Cross-Cultural Analysis of Object Use and Enskillment in Hunter–Gatherer Societies. Journal of Archaeological Method and Theory. https://doi.org/10.1007/s10816-022-09593-3

Riede, F., Araujo, A., & Marwick, B. (2022). Robert C. Dunnell's Systematics in prehistory at 50. Evolutionary Human Sciences, 4, E16. doi:10.1017/ehs.2022.18

Riede, F. C. Hoggard & S. Shennan (2019). Reconciling material cultures in archaeology with genetic data requires robust cultural evolutionary taxonomies. Palgrave Communications 5, Article number: 55 (2019) https://www.nature.com/articles/s41599-019-0260-7#Fn1

Riris, P. and de Souza JG (2021). Formal Tests for Resistance-Resilience in Archaeological Time Series. Frontiers in Ecology and Evolution 9:740629. http://doi.org/10.3389/fevo.2021.740629

Riris, P., Silva, F. (2021). Resolution and the detection of cultural dispersals: development and application of spatiotemporal methods in Lowland South America. Humanities and Social Sciences Communications 8, 36 https://doi.org/10.1057/s41599-021-00717-w

Riris, P. (2020). Spatial structure among the geometric earthworks of western Amazonia (Acre, Brazil). Journal of Anthropological Archaeology, 59, 101177. https://doi.org/10.1016/j.jaa.2020.101177 https://doi.org/10.17605/OSF.IO/NG896

Riris, P., & Arroyo-Kalin, M. (2019). Widespread population decline in South America correlates with mid-Holocene climate change. Scientific reports, 9(1), 6850.

Riris, P. (2018). Dates as Data Revisited: A Statistical Examination of the Peruvian Preceramic Radiocarbon Record. Journal of Archaeological Science 97 (September 1, 2018): 67–76.https://doi.org/10.1016/j.jas.2018.06.008

Roalkvam, I. (2023). A simulation-based assessment of the relation between Stone age sites and relative sea-level change along the Norwegian Skagerrak coast. Quaternary Science Reviews, 299, 107880. https://doi.org/10.1016/j.quascirev.2022.107880

Robinson, Erick, Bocinsky R. Kyle, Bird Darcy, Freeman Jacob and Kelly Robert L. (2021). Dendrochronological dates confirm a Late Prehistoric population decline in the American Southwest derived from radiocarbon dates Philosophical Transactions of the Royal Society B: Biological Sciences B37620190718 http://doi.org/10.1098/rstb.2019.0718

Robinson, J.R. (2021). Investigating Isotopic Niche Space: Using rKIN for Stable Isotope Studies in Archaeology. Journal of Archaeological Method and Theory https://doi.org/10.1007/s10816-021-09541-7

Rodríguez, J., Willmes, C., Sommer, C., & Mateos, A. (2022). Sustainable human population density in Western Europe between 560.000 and 360.000 years ago. Scientific Reports, 12(1), 6907. https://doi.org/10.1038/s41598-022-10642-w

Roscoe, Paul, Sandweiss Daniel H. and Robinson Erick (2021). Population density and size facilitate interactive capacity and the rise of the state Philosophical Transactions of the Royal Society B: Biological Sciences B37620190725 http://doi.org/10.1098/rstb.2019.0725

Ruebens, K., Smith, G.M., Fewlass, H., Sinet-Mathiot, V., Hublin, J.-J. and Welker, F. (2023). Neanderthal subsistence, taphonomy and chronology at Salzgitter-Lebenstedt (Germany): a multifaceted analysis of morphologically unidentifiable bone. Journal of Quaternary Science. https://doi.org/10.1002/jqs.3499

Rubio-Campillo, X., Montanier,, J.M., Rull, G., Bermúdez Lorenzo, J.M., Moros Díaz, J., Pérez González, J., Remesal Rodríguez, J. (2018). The ecology of Roman trade. Reconstructing provincial connectivity with similarity measures, Journal of Archaeological Science, 92, pp. 37-47. doi:10.1016/j.jas.2018.02.010 https://github.com/xrubio/ecologyStamps

Rubio-Campillo, X., Coto-Sarmiento, M., Pérez-Gonzalez, J. and Remesal Rodríguez, J. (2017). Bayesian analysis and free market trade within the Roman Empire, Antiquity, 91(359), pp. 1241–1252. doi:10.15184/aqy.2017.131 https://github.com/xrubio/bayesRome

Sanger, M.C., Bourcy, S., Ogden, Q.M. et al. (2020). Post-marital Residence Patterns in the Late Archaic Coastal Southeast USA: Similarities in Stone Tools Revealed by Geometric Morphometrics. Journal of Archaeological Method and Theory 27, 327–359 https://doi.org/10.1007/s10816-019-09435-9 https://orb.binghamton.edu/dissertation_and_theses/46/

Schauer, Peter, Andrew Bevan, Stephen Shennan, Kevan Edinborough, Tim Kerig, Mike Parker Pearson (2020). British Neolithic axe distributions and their implications. Journal of Archaeological Method and Theory 27, 836–859. https://doi.org/10.1007/s10816-019-09438-6

Schmid, C. (2019). Evaluating Cultural Transmission in Bronze Age burial rites of Central, Northern and Northwestern Europe using radiocarbon data. Adaptive Behavior, 1059712319860842. https://osf.io/b6np2/

Schmidt, S. C. (2020). Siedlungsgrößen und Abstände zwischen Siedlungsstandorten – eine geostatistische Analyse von Transektdaten, Praehistorische Zeitschrift, 94(2), 499-528. doi: https://doi.org/10.1515/pz-2019-0015

Schmidt, Isabell, Hilpert Johanna, Kretschmer Inga, Peters Robin, Broich Manuel, Schiesberg Sara, Vogels Oliver, Wendt Karl Peter, Zimmermann Andreas and Maier Andreas (2021). Approaching prehistoric demography: proxies, scales and scope of the Cologne Protocol in European contexts Philosophical Transactions of the Royal Society B: Biological Sciences B37620190714 http://doi.org/10.1098/rstb.2019.0714

Schmidt, S.C. and Marwick, B., (2020). Tool-Driven Revolutions in Archaeological Science. Journal of Computer Applications in Archaeology, 3(1), pp.18–32. DOI: http://doi.org/10.5334/jcaa.29

Schotsmans, E.M.J., Busacca, G., Lin, S.C. et al. (2022). New insights on commemoration of the dead through mortuary and architectural use of pigments at Neolithic Çatalhöyük, Turkey. Scientific Reports 12, 4055. https://doi.org/10.1038/s41598-022-07284-3

Selden Jr., R. Z., Dockall, J. E., Bousman, C. B., & Perttula, T. K. (2021). Shape as a function of time + raw material + burial context? An exploratory analysis of Perdiz arrow points from the ancestral Caddo area of the American Southeast. Journal of Archaeological Science: Reports, 37, 102916. https://doi.org/10.1016/j.jasrep.2021.102916

Schoville, B.J., Brown, K.S. & Wilkins, J. (2022). A Lithic Provisioning Model as a Proxy for Landscape Mobility in the Southern and Middle Kalahari. J Archaeol Method Theory 29, 162–187 https://doi.org/10.1007/s10816-021-09507-9

Selden, R. Z., Dockall, J. E., & Dubied, M. (2020). A quantitative assessment of intraspecific morphological variation in Gahagan bifaces from the southern Caddo area and central Texas. Southeastern Archaeology, 39(2), pp.125–145. DOI: https://doi.org/10.1080/0734578X.2020.1744416 data & code: https://osf.io/2g95w/

Shennan, SJ, Enrico R. Crema, Tim Kerig, (2014). Isolation-by-distance, homophily, and 'core' vs. 'package' cultural evolution models in Neolithic Europe, Evolution and Human Behavior, Available online 2 October 2014, http://dx.doi.org/10.1016/j.evolhumbehav.2014.09.006

Shott, M., & Otárola-Castillo, E. (2022). Parts and Wholes: Reduction Allometry and Modularity in Experimental Folsom Points. American Antiquity, 87(1), 80-99. doi:10.1017/aaq.2021.62

Silva, F., (2020). A probabilistic framework and significance test for the analysis of structural orientations in skyscape archaeology. Journal of Archaeological Science 118, 105138. https://doi.org/10.1016/j.jas.2020.105138

Sinensky, R. J., and A. Farahani. (2018). DIVERSITY-DISTURBANCE RELATIONSHIPS IN THE LATE ARCHAIC SOUTHWEST: IMPLICATIONS FOR FARMER-FORAGER FOODWAYS American Antiquity 83 (2): 364–364. https://doi.org/10.1017/aaq.2017.74

Sinensky, R., Schachner, G., Wilshusen, R., & Damiata, B. (2022). Volcanic climate forcing, extreme cold and the Neolithic Transition in the northern US Southwest. Antiquity, 96(385), 123-141. doi:10.15184/aqy.2021.19

Smith, G. R. Spasov, N. L. Martisius, V. Sinet-Mathiot, V. Aldeias, et al. (2021). Subsistence behavior during the Initial Upper Paleolithic in Europe: Site use, dietary practice, and carnivore exploitation at Bacho Kiro Cave (Bulgaria), Journal of Human Evolution, Volume 161, 2021, 103074, https://doi.org/10.1016/j.jhevol.2021.103074

Smith, G.M., Noack, E.S., Behrens, N.M. et al. (2020). When Lithics Hit Bones: Evaluating the Potential of a Multifaceted Experimental Protocol to Illuminate Middle Palaeolithic Weapon Technology. Journal of Paleolithic Archaeology 3, 126–156 https://doi.org/10.1007/s41982-020-00053-6

Snitker, G., Moser, J. D., Southerlin, B., & Stewart, C. (2022). Detecting historic tar kilns and tar production sites using high-resolution, aerial LiDAR-derived digital elevation models: Introducing the Tar Kiln Feature Detection workflow (TKFD) using open-access R and FIJI software. Journal of Archaeological Science: Reports, 41, 103340. https://doi.org/10.1016/j.jasrep.2022.103340

Sommer, C., Kandel, A. W., & Hochschild, V. (2022). The use of prehistoric ‘big data’ for mapping early human cultural networks. Journal of Maps, 1–12. https://doi.org/10.1080/17445647.2022.2118628

Souza, J. G. de, Ruiz-Pérez, J., Lancelotti, C., & Madella, M. (2022). Environmental effects on the spread of the Neolithic crop package to South Asia. PLOS ONE, 17(7), e0268482. https://doi.org/10.1371/journal.pone.0268482

Souza, J. G. de, & Riris, P. (2021). Delayed demographic transition following the adoption of cultivated plants in the eastern La Plata Basin and Atlantic coast, South America. Journal of Archaeological Science, 125, 105293. https://doi.org/10.1016/j.jas.2020.105293

Spake, L., Cardoso, H.F.V. (2021). Interpolation of the Maresh diaphyseal length data for use in quantitative analyses of growth. International Journal of Osteoarchaeology 31:232-242. https://osf.io/c2x7k/

Stantis, C., Maaranen, N., Kharobi, A., Nowell, G. M., Macpherson, C., Schutkowski, H., & Bourke, S. (2022). Jordanian migration and mobility in the Middle Bronze Age (ca. 2100–1550 BCE) at Pella. International Journal of Osteoarchaeology, 32(2), 339–357. https://doi.org/10.1002/oa.3069

Stantis, C., Kharobi, A., Maaranen, N. et al. (2021). Multi-isotopic study of diet and mobility in the northeastern Nile Delta. Archaeological and Anthropological Sciences 13, 105 (2021). https://doi.org/10.1007/s12520-021-01344-x

Steele, Teresa E., Alex Mackay, Kathryn E. Fitzsimmons, Marina Igreja, Ben Marwick, Jayson Orton, Steve Schwortz, and Mareike C. Stahlschmidt (2016). "Varsche Rivier 003: A Middle and Later Stone Age Site with Still Bay and Howieson's Poort Assemblages in Southern Namaqualand, South Africa" PaleoAnthropology 2016:100-163 http://www.paleoanthro.org/media/journal/content/PA20160100.pdf, < http://dx.doi.org/10.5281/zenodo.31903>

Stewart, M., Carleton, W.C. and Groucutt, H.S. (2022). Extreme events in biological, societal, and earth sciences: A systematic review of the literature. Frontiers of Earth Science 10:786829. https://doi.org/10.3389/feart.2022.786829

Stewart, M., Carleton, W.C. & Groucutt, H.S. (2021). Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nature communications 12, 965 https://doi.org/10.1038/s41467-021-21201-8

Stoddart, S., Palmisano, A.,Redhouse, D., Barker, G., di Paola, G., Motta, L., Rasmussen, T., Samuels, T. & Witcher, R. (2020). Patterns of EtruscanUrbanism. Front. Digit. Humanit. 7:1. https://doi.org/10.3389/fdigh.2020.00001

Strand, L.M., Leggett, S., Skar, B., (2022). Multi-Isotope Variation Reveals Social Complexity in Viking Age Norway, ISCIENCE https://doi.org/10.1016/j.isci.2022.105225

Strawhacker, C., Snitker, G., Peeples, M. A., Kinzig, A. P., Kintigh, K. W., Bocinsky, K., ... & Sandor, J. A. (2020). A Landscape Perspective on Climate-Driven Risks to Food Security: Exploring the Relationship between Climate and Social Transformation in the Prehispanic US Southwest. American Antiquity, 85(3), 427-451. https://doi.org/10.1017/aaq.2020.35 https://github.com/gsnitker/LTVTP https://core.tdar.org/collection/14044/long-term-vulnerability-and-transformation-project-ltvtp-documents-and-data

Suárez, R., & Cardillo, M. (2019). Life history or stylistic variation? A geometric morphometric method for evaluation of Fishtail point variability. Journal of Archaeological Science: Reports, 27, 101997. https://doi.org/10.1016/j.jasrep.2019.101997

Suryanarayan, A., Cubas, M., Craig, O. E., Heron, C. P., Shinde, V. S., Singh, R. N., O'Connell, T. C., Petrie, C. A. (2021). Lipid residues in pottery from the Indus Civilisation in northwest India. _Journal of Archaeological Science_125. https://doi.org/10.1016/j.jas.2020.105291

Tallavaara, Miikka and Jørgensen Erlend Kirkeng (2021). Why are population growth rate estimates of past and present hunter–gatherers so different? Philosophical Transactions of the Royal Society B: Biological Sciences B37620190708 http://doi.org/10.1098/rstb.2019.0708

Tenzer, M. (2022). Tweets in the Peak: Twitter Analysis - the impact of Covid-19 on cultural landscapes, Internet Archaeology 59. https://doi.org/10.11141/ia.59.6

Timbrell, L., Peña, P. de la, Way, A., Hoggard, C., Backwell, L., Francesco d’Errico, Wadley, L., & Grove, M. (2022). Technological and geometric morphometric analysis of ‘post-Howiesons Poort points’ from Border Cave, KwaZulu-Natal, South Africa. Quaternary Science Reviews, 297, 107813. https://doi.org/10.1016/j.quascirev.2022.107813

Timbrell, L., Scott, C., Habte, B. et al. (2022). Testing inter-observer error under a collaborative research framework for studying lithic shape variability. Archaeological Anthropological Science 14, 209 https://doi.org/10.1007/s12520-022-01676-2

Timbrell, L., Grove, M., Manica, A. et al. A spatiotemporally explicit paleoenvironmental framework for the Middle Stone Age of eastern Africa. Scientific Reports 12, 3689 (2022). https://doi.org/10.1038/s41598-022-07742-y

Timpson, Adrian, Barberena Ramiro, Thomas Mark G., Méndez César and Manning Katie (2021). Directly modelling population dynamics in the South American Arid Diagonal using 14C dates Philosophical Transactions of the Royal Society B: Biological Sciences B37620190723 http://doi.org/10.1098/rstb.2019.0723

Trentacoste, A., Nieto-Espinet, A., Guimarães Chiarelli, S., & Valenzuela-Lamas, S. (2022). Systems change: Investigating climatic and environmental impacts on livestock production in lowland Italy between the Bronze Age and Late Antiquity (c. 1700 BC – AD 700). Quaternary International. https://doi.org/10.1016/j.quaint.2022.11.005

Tsirintoulaki, K., Matzig, D. N., & Riede, F. (2023). A 2D Geometric Morphometric Assessment of Chrono-Cultural Trends in Osseous Barbed Points of the European Final Palaeolithic and Early Mesolithic. Open Archaeology, 9(1). https://doi.org/10.1515/opar-2022-0276

Ullah, Isaac I. T., Ian Kuijt, and Jacob Freeman. (2015). “Toward a Theory of Punctuated Subsistence Change.” Proceedings of the National Academy of Sciences 112 (31): 9579–84. https://doi.org/10.1073/pnas.1503628112. http://figshare.com/articles/Cross_cultural_data_for_multivariate_analysis_of_subsistence_strategies/1404233

Utting, B. (2022). Geochemical fingerprinting of Pleistocene stone tools from the Tràng An Landscape Complex, Ninh Bình Province, Vietnam. PLoS ONE 17(6): e0269658. https://doi.org/10.1371/journal.pone.0269658

Vander Linden, Marc and Silva Fabio (2021). Dispersals as demographic processes: testing and describing the spread of the Neolithic in the Balkans Philosophical Transactions of the Royal Society B: Biological Sciences B37620200231 http://doi.org/10.1098/rstb.2020.0231

Vidal-Cordasco, M., Ocio, D., Hickler, T. et al. (2022). Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia. Nature Ecology and Evolution (2022). https://doi.org/10.1038/s41559-022-01861-5

Vignoles, Anais, William E. Banks, Laurent Klaric, Masa Kageyama, Marlon E. Cobos, Daniel Romero-Alvarez. (2020). Investigating relationships between technological variability and ecology in the Middle Gravettian (ca. 32-28 ka cal. BP) in France. (2020), OSF, ud3hj, ver. 3 peer-reviewed and recommended by PCI Archaeology. https://doi.org/10.31219/osf.io/ud3hj

Visentin, D., & Carrer, F. (2017). Evaluating Mesolithic settlement patterns in mountain environments (Dolomites, Eastern Italian Alps): the role of research biases and locational strategies. Archeologia e calcolatori 28(1), 129-154. http://eprints.bice.rm.cnr.it/id/eprint/17240

Visser, RM and Vorst, Y. (2022). Connecting Ships: Using Dendrochronological Network Analysis to Determine the Wood Provenance of Roman-Period River Barges Found in the Lower Rhine Region and Visualise Wood Use Patterns. International Journal of Wood Culture 1(aop): 1–29. https://doi.org/10.1163/27723194-bja10014.

Visser, RM. (2021). On the similarity of tree-ring patterns: Assessing the influence of semi-synchronous growth changes on the Gleichläufigkeitskoeffizient for big tree-ring data sets. Archaeometry 63(1): 204–215. DOI: https://doi.org/10.1111/arcm.12600.

Visser, R.M., 2021. Dendrochronological Provenance Patterns. Network Analysis of Tree-Ring Material Reveals Spatial and Economic Relations of Roman Timber in the Continental North-Western Provinces. Journal of Computer Applications in Archaeology 4(1): 230–253. DOI: http://doi.org/10.5334/jcaa.79

Wang, Li-Ying, and Ben Marwick (2021). A Bayesian Networks Approach to Infer Social Changes from Burials in Northeastern Taiwan during the European Colonization Period. Journal of Archaeological Science 134: 105471.

Wang, L. and Marwick, B. (2020). Standardization of ceramic shape: A case study from the Iron Age pottery from northeastern Taiwan. Journal of Archaeological Science: Reports 33. https://doi.org/10.1016/j.jasrep.2020.102554 https://github.com/LiYingWang/kwl.pottery https://osf.io/abvgf/

Wang, L. and Marwick, B. (2020). Ornaments as indicators of social changes resulting from indirect effects of colonialism in northeastern Taiwan. Archaeological Research in Asia. https://doi.org/10.1016/j.ara.2020.100226 https://github.com/LiYingWang/kwl-ornaments https://osf.io/r8yga/

Wattanapituksakul, A., Shoocongdej, R., & Conrad, C. (2022). Preservation of Mammalian Teeth and Bones Influences Identification of Terminal Pleistocene to Middle Holocene Hunter-Gatherer Subsistence at Ban Rai Rockshelter, Northwest Thailand. Quaternary, 5(4), Article 4. https://doi.org/10.3390/quat5040051

Way, A.M., de la Peña, P., de la Peña, E. et al. (2022). Howiesons Poort backed artifacts provide evidence for social connectivity across southern Africa during the Final Pleistocene. Scientific Reports 12, 9 https://doi.org/10.1038/s41598-022-12677-5

Weiss, Marcel. (2020). “The Lichtenberg Keilmesser - It’s All about the Angle.” PLOS ONE 15(10): e0239718. https://doi.org/10.1371/journal.pone.0239718

Weitzel, E. M. (2019). Declining foraging efficiency in the Middle Tennessee River Valley prior to initial domestication. American Antiquity, 1-24. https://doi.org/10.1017/aaq.2018.86 https://osf.io/2gub7/

Wilczek, J., Monna, F., Navarro, N., & Chateau-Smith, C. (2021). A computer tool to identify best matches for pottery fragments. Journal of Archaeological Science: Reports, 37, 102891. https://doi.org/10.1016/j.jasrep.2021.102891

Will, M., Bader, G. D., Sommer, C., Cooper, A., & Green, A. (2022). Coastal adaptations on the eastern seaboard of South Africa during the Pleistocene and Holocene? Current evidence and future perspectives from archaeology and marine geology. Frontiers in Earth Science, 10, 964423. https://doi.org/10.3389/feart.2022.964423

Wilson, Evan Patrick, Dietrich Stout, Cheng Liu, Megan Beney Kilgore & Justin Pargeter (2023). Skill and Core Uniformity: An Experiment with Oldowan-like Flaking Systems, Lithic Technology, https://doi.org/10.1080/01977261.2023.2178767

Wilson, K.M., McCool, W.C., Brewer, S.C. et al. (2022). Climate and demography drive 7000 years of dietary change in the Central Andes. Scientific Reports 12, 2026 https://doi.org/10.1038/s41598-022-05774-y

Wolfhagen, J. (2020). Re-examining the use of the LSI technique in zooarchaeology. Journal of Archaeological Science Volume 123, November 2020, 105254 https://doi.org/10.1016/j.jas.2020.105254 https://osf.io/4k62y/

Wolfhagen, J. and Price, M. D. (2017). A probabilistic model for distinguishing between sheep and goat postcranial remains. Journal of Archaeological Science: Reports 12: 625-31. https://doi.org/10.1016/j.jasrep.2017.02.022

Wren, C. D., & Burke, A. (2019). Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PloS one, 14(6), e0217996. https://osf.io/n24rq/

Wren, C. D., Botha, S., De Vynck, J., Janssen, M. A., Hill, K., Shook, E., Marean, C. W. (2019). The foraging potential of the Holocene Cape south coast of South Africa without the Palaeo-Agulhas Plain. Quaternary Science Reviews, 105789. https://doi.org/10.1016/j.quascirev.2019.06.012

Wyatt-Spratt, S., (2022). After the Revolution: A Review of 3D Modelling as a Tool for Stone Artefact Analysis. Journal of Computer Applications in Archaeology, 5(1), pp.215–237. http://doi.org/10.5334/jcaa.103

Yaworsky, P. M., Vernon, K. B., Spangler, J. D., Brewer, S. C., & Codding, B. F. (2020). Advancing predictive modeling in archaeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PloS one, 15(10), e0239424. https://doi.org/10.1371/journal.pone.0239424

Contributors

Ben Marwick, Agustin Diez Castillo, Allar Haav, Sebastian Heath, Phil Riris, Tom Brughmans, Lee Drake, Stefano Costa, Enrico Crema, Domenico Giusti, Matt Peeples, Mark Madsen, Daniel Contreras, Tal Galili, Li-Ying Wang, Bjørn Peare Bartholdy, Ronald Visser, Moritz Mennenga

About

CRAN Task View: Archaeological Science

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%