Skip to content

Commit

Permalink
Added Description to urban heating dataset.
Browse files Browse the repository at this point in the history
  • Loading branch information
WeathermanTrent authored and moradology committed Aug 30, 2023
1 parent 471eb1a commit d3cb0d3
Showing 1 changed file with 16 additions and 3 deletions.
19 changes: 16 additions & 3 deletions datasets/urban-heating.data.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -208,7 +208,9 @@ layers:
---
<Block>
<Prose>
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras ut nisl nec quam dignissim vestibulum vitae sit amet augue. Vestibulum a diam vitae nisl interdum auctor eget vitae tortor. Nam a velit pretium neque consequat congue vitae sit amet ligula. Suspendisse potenti. Nunc ullamcorper neque et imperdiet hendrerit. Donec volutpat congue placerat. Nam feugiat pretium eleifend. Curabitur semper arcu augue, ut facilisis ipsum hendrerit nec. Sed semper elit ac eros eleifend suscipit. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam vulputate ligula vitae tincidunt lacinia. Pellentesque finibus ante in nunc auctor ornare.
## Introduction

Urban heat islands (UHIs) are no longer mere academic concepts; they’re palpable urban challenges. In cities such as Houston in this case, understanding the dynamics of land surface temperature (LST) is not just about decoding satellite data, but comprehending its implications for urban planning, health, and socioeconomic dynamics. Leveraging data from NASA’s Terra MODIS (moderate Resolution Imaging Spectroradiometer) platform, we delve into Houston’s changing LST landscape over two decades, offering a technical perspective on this urban phenomenon. LST is the temperature of the earth’s surface derived from NASA’s Terra MODIS, encompassing both natural terrains and man-made infrastructures. Unlike ambient air temperature, which gauges the immediate atmospheric conditions we feel, LST provides a granular temperature profile of surfaces from park greens to asphalt roads.
</Prose>
</Block>

Expand All @@ -230,8 +232,19 @@ Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras ut nisl nec quam d
</Caption>
</Figure>
<Prose>
## Lorem ipsum dolor sit amet
## Data Acquisition

Terra MODIS has been instrumental in capturing LST data. This platform, orbiting Earth, scans our planet in multiple spectral bands, allowing for a detailed analysis of LST values. The data periods 2000-20009 and 2010-2019 form this satellite have been particularly enlightening, revealing distinct shifts in Houston’s urban heat profile.

Comparative analysis of LST data from the two decades indicate a tangible uptick in surface temperatures, especially in Houston’s southwestern regions. Urban expansion is likely culprit, with infrastructural growth leading to increased heat absorption and radiation. This phenomenon, known as the urban heat island effect, can intensify local temperatures, leading to a cascade of socio-environmental effects.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras ut nisl nec quam dignissim vestibulum vitae sit amet augue. Vestibulum a diam vitae nisl interdum auctor eget vitae tortor. Nam a velit pretium neque consequat congue vitae sit amet ligula. Suspendisse potenti. Nunc ullamcorper neque et imperdiet hendrerit. Donec volutpat congue placerat. Nam feugiat pretium eleifend. Curabitur semper arcu augue, ut facilisis ipsum hendrerit nec. Sed semper elit ac eros eleifend suscipit. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam vulputate ligula vitae tincidunt lacinia. Pellentesque finibus ante in nunc auctor ornare.
</Prose>
</Block>

<Block>
<Prose>
## Conclusion

Houston’s LST data, meticulously captured by Terra MODIS, serves as a crucial pointer for urban planners, environmentalists, and policymakers. By understanding the nexus of urban heat, infrastructure, and socio-economics, we can shape urban features that are not only sustainable but also equitable. As Houston continues its urban journey, armed with this data, it has the potential to redefine urban resilience in the face of escalating heat challenges.
</Prose>
</Block>

0 comments on commit d3cb0d3

Please sign in to comment.