Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add MOPITT CO L3 pairing and updates to satplot #251

Merged
merged 9 commits into from
May 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
560 changes: 97 additions & 463 deletions examples/jupyter_notebooks/MM-example-mopitt.ipynb

Large diffs are not rendered by default.

64 changes: 55 additions & 9 deletions examples/yaml/control_mopitt.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -5,19 +5,65 @@
# Seting axis values - If set_axis = True in data_proc section of each plot_grp the yaxis for the plot will be set based on the values specified in the obs section for each variable. If set_axis is set to False, then defaults will be used. 'vmin_plot' and 'vmax_plot' are needed for 'timeseries', 'spatial_overlay', and 'boxplot'. 'vdiff_plot' is needed for 'spatial_bias' plots and'ty_scale' is needed for 'taylor' plots. 'nlevels' or the number of levels used in the contour plot can also optionally be provided for spatial_overlay plot. If set_axis = True and the proper limits are not provided in the obs section, a warning will print, and the plot will be created using the default limits.
#-------------------------------------------------------------------
analysis:
start_time: '2020-08-01'
end_time: '2020-08-03'
output_dir: /glade/work/buchholz/melodies-monet/output
start_time: '2019-07-15'
end_time: '2019-07-19'
output_dir: /ships19/aqda/mbruckner/Mopitt_mm_test
debug: True

#-------------------------------------------------------------------
# model:

model:
raqms:
files: /ships19/aqda/mbruckner/monet_plots/mopitt_example_raqms/uwhyb*nc
mod_type: 'raqms'
apply_ak: True # for satellite comparison, applies averaging kernels/apriori when true. Default to False
variables: #Opt
ico: # specifying to switch units to ppbv
need: True
mapping: #model species name : obs species name
mopitt_l3:
ico: column #The mapping tables need to contain the same species for all models.
plot_kwargs: #Opt
color: 'purple'
marker: '^'
linestyle: 'dotted'
#-------------------------------------------------------------------
obs:
mopitt_l3: # obs label
filename: /glade/work/buchholz/data/MOPITT/MOP03JM-2020*
filename: /ships19/aqda/mbruckner/Mopitt_mm_test/MOP03J-201907*he5
obs_type: sat_grid_clm
variables: null


sat_type: mopitt_l3
variables:
column:
ylabel_plot: '$10^{18} molec/cm^{2}$'
#-------------------------------------------------------------------
plots:
plot_grp3:
type: 'gridded_spatial_bias' #'gridded_spatial_bias' # plot type
fig_kwargs: #For all spatial plots, specify map_kwargs here too.
states: True
figsize: [10, 5] # figure size
text_kwargs: #Opt
fontsize: 16.
domain_type: ['all'] #List of domain types: 'all' or any domain in obs file. (e.g., airnow: epa_region, state_name, siteid, etc.)
domain_name: ['Global'] #List of domain names. If domain_type = all domain_name is used in plot title.
data: ['mopitt_l3_raqms'] # make this a list of pairs in obs_model where the obs is the obs label and model is the model_label
data_proc:
rem_obs_nan: True # True: Remove all points where model or obs variable is NaN. False: Remove only points where model variable is NaN.
set_axis: True #If select True, add vdiff_plot for each variable in obs.


plot_grp2:
type: 'taylor' # plot type
fig_kwargs: #Opt to define figure options
figsize: [8,8] # figure size if multiple plots
default_plot_kwargs: # Opt to define defaults for all plots. Model kwargs overwrite these.
linewidth: 2.0
markersize: 10.
text_kwargs: #Opt
fontsize: 16.
domain_type: ['all'] #List of domain types: 'all' or any domain in obs file. (e.g., airnow: epa_region, state_name, siteid, etc.)
domain_name: ['Global'] # of domain names. If domain_type = all domain_name is used in plot title.
data: ['mopitt_l3_raqms'] # make this a list of pairs in obs_model where the obs is the obs label and model is the model_label
data_proc:
rem_obs_nan: True # True: Remove all points where model or obs variable is NaN. False: Remove only points where model variable is NaN.
set_axis: True #If select True, add ty_scale for each variable in obs.
45 changes: 23 additions & 22 deletions examples/yaml/control_omps_nm-raqms.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ analysis:
read:
paired:
method: 'netcdf'
filenames: {'omps_nm_raqms':['firex_omps_201908*_20190*_omps_nm_raqms.nc4']}
filenames: {'omps_nm_raqms':['firex_omps_*_omps_nm_raqms.nc4']}
model:
raqms: # model label
files: /ships19/aqda/mbruckner/MELODIES-MONET-1/examples/jupyter_notebooks/raqms-files.txt
Expand All @@ -27,33 +27,35 @@ model:
o3vmr: ozone_column #The mapping tables need to contain the same species for all models.
plot_kwargs: #Opt
color: 'purple'
marker: '+'
marker: '^'
linestyle: 'dotted'
obs:
omps_nm: # obs label
filename: /ships19/aqda/mbruckner/OMPS-NPP/O3-daily/2019/nadir_mapper/OMPS-NPP_NMTO3-L2_v2.1_2019m08*t*.h5
obs_type: sat_swath_clm
sat_type: omps_nm
variables: #Opt

ozone_column:
ylabel_plot: 'DU'

plots:
plot_grp1:
type: 'timeseries' # plot type
fig_kwargs: #Opt to define figure options
figsize: [12,6] # figure size if multiple plots
default_plot_kwargs: # Opt to define defaults for all plots. Model kwargs overwrite these.
linewidth: 2.0
markersize: 10.
text_kwargs: #Opt
fontsize: 18.
domain_type: ['all'] #List of domain types: 'all' or any domain in obs file. (e.g., airnow: epa_region, state_name, siteid, etc.)
domain_name: ['Global'] #List of domain names. If domain_type = all domain_name is used in plot title.
data: ['omps_nm_raqms'] # make this a list of pairs in obs_model where the obs is the obs label and model is the model_label
data_proc:
rem_obs_nan: True # True: Remove all points where model or obs variable is NaN. False: Remove only points where model variable is NaN.
ts_select_time: 'time' #Time used for avg and plotting: Options: 'time' for UTC or 'time_local'
ts_avg_window: 'min' # Options: None for no averaging or list pandas resample rule (e.g., 'H', 'D')
set_axis: False #If select True, add vmin_plot and vmax_plot for each variable in obs.
# plot_grp1:
# type: 'timeseries' # plot type
# fig_kwargs: #Opt to define figure options
# figsize: [12,6] # figure size if multiple plots
# default_plot_kwargs: # Opt to define defaults for all plots. Model kwargs overwrite these.
# linewidth: 2.0
# markersize: 10.
# text_kwargs: #Opt
# fontsize: 18.
# domain_type: ['all'] #List of domain types: 'all' or any domain in obs file. (e.g., airnow: epa_region, state_name, siteid, etc.)
# domain_name: ['Global'] #List of domain names. If domain_type = all domain_name is used in plot title.
# data: ['omps_nm_raqms_grid'] # make this a list of pairs in obs_model where the obs is the obs label and model is the model_label
# data_proc:
# rem_obs_nan: True # True: Remove all points where model or obs variable is NaN. False: Remove only points where model variable is NaN.
# ts_select_time: 'time' #Time used for avg and plotting: Options: 'time' for UTC or 'time_local'
# ts_avg_window: 'min' # Options: None for no averaging or list pandas resample rule (e.g., 'H', 'D')
# set_axis: False #If select True, add vmin_plot and vmax_plot for each variable in obs.
plot_grp2:
type: 'taylor' # plot type
fig_kwargs: #Opt to define figure options
Expand All @@ -76,10 +78,9 @@ plots:
figsize: [10, 5] # figure size
text_kwargs: #Opt
fontsize: 16.
#label: '$\\Delta$ DU'
domain_type: ['all'] #List of domain types: 'all' or any domain in obs file. (e.g., airnow: epa_region, state_name, siteid, etc.)
domain_name: ['Global'] #List of domain names. If domain_type = all domain_name is used in plot title.
data: ['omps_nm_raqms'] # make this a list of pairs in obs_model where the obs is the obs label and model is the model_label
data_proc:
rem_obs_nan: True # True: Remove all points where model or obs variable is NaN. False: Remove only points where model variable is NaN.
set_axis: True #If select True, add vdiff_plot for each variable in obs.
set_axis: True #If select True, add vdiff_plot for each variable in obs.
70 changes: 50 additions & 20 deletions melodies_monet/driver.py
Original file line number Diff line number Diff line change
Expand Up @@ -260,7 +260,7 @@ def open_sat_obs(self,time_interval=None):
try:
if self.sat_type == 'omps_l3':
print('Reading OMPS L3')
self.obj = mio.sat._omps_l3_mm.read_OMPS_l3(self.file)
self.obj = mio.sat._omps_l3_mm.open_dataset(self.file)
elif self.sat_type == 'omps_nm':
print('Reading OMPS_NM')
if time_interval is not None:
Expand All @@ -279,7 +279,8 @@ def open_sat_obs(self,time_interval=None):

elif self.sat_type == 'mopitt_l3':
print('Reading MOPITT')
self.obj = mio.sat._mopitt_l3_mm.read_mopittdataset(self.file, 'column')
self.obj = mio.sat._mopitt_l3_mm.open_dataset(self.file, ['column','pressure_surf','apriori_col',
'apriori_surf','apriori_prof','ak_col'])
elif self.sat_type == 'modis_l2':
from monetio import modis_l2
print('Reading MODIS L2')
Expand Down Expand Up @@ -453,7 +454,7 @@ def glob_files(self):
self.files = [tutorial.fetch_example(example_id)]
else:
self.files = sort(glob(self.file_str))

# add option to read list of files from text file
_, extension = os.path.splitext(self.file_str)
if extension.lower() == '.txt':
Expand Down Expand Up @@ -553,7 +554,7 @@ def open_model_files(self, time_interval=None, control_dict=None):
self.mod_kwargs.update({'scrip_file' : self.scrip_file})
self.obj = mio.models._cesm_se_mm.open_mfdataset(self.files,**self.mod_kwargs)
#self.obj, self.obj_scrip = read_cesm_se.open_mfdataset(self.files,**self.mod_kwargs)
#self.obj.monet.scrip = self.obj_scrip
#self.obj.monet.scrip = self.obj_scrip
elif 'raqms' in self.model.lower():
if len(self.files) > 1:
self.obj = mio.raqms.open_mfdataset(self.files,**self.mod_kwargs)
Expand Down Expand Up @@ -1026,6 +1027,7 @@ def pair_data(self, time_interval=None):
print('After pairing: ', paired_data)
# this outputs as a pandas dataframe. Convert this to xarray obj
p = pair()
print('saving pair')
p.obs = obs.label
p.model = mod.label
p.model_vars = keys
Expand Down Expand Up @@ -1115,13 +1117,15 @@ def pair_data(self, time_interval=None):
# if sat_swath_clm (satellite l2 column products)
elif obs.obs_type.lower() == 'sat_swath_clm':

if obs.label == 'omps_nm':
if obs.sat_type == 'omps_nm':

from .util import satellite_utilities as sutil

#necessary observation index things
#the along track coordinate dim sometimes needs to be time and other times an unassigned 'x'
obs.obj = obs.obj.swap_dims({'time':'x'})
# necessary observation index things
## the along track coordinate dim sometimes needs to be time and other times an unassigned 'x'
if 'time' in obs.obj.dims:
obs.obj = obs.obj.sel(time=slice(self.start_time,self.end_time))
obs.obj = obs.obj.swap_dims({'time':'x'})
if mod.apply_ak == True:
model_obj = mod.obj[keys+['pres_pa_mid','surfpres_pa']]

Expand All @@ -1142,22 +1146,46 @@ def pair_data(self, time_interval=None):
self.paired[label] = p
# if sat_grid_clm (satellite l3 column products)
elif obs.obs_type.lower() == 'sat_grid_clm':
if obs.label == 'omps_l3':
if len(keys) > 1:
print('Caution: More than 1 variable is included in mapping keys.')
print('Pairing code is calculating a column for {}'.format(keys[0]))
if obs.sat_type == 'omps_l3':
from .util import satellite_utilities as sutil
# trim obs array to only data within analysis window
obs_dat = obs.obj.sel(time=slice(self.start_time.date(),self.end_time.date())).copy()
model_obsgrid = sutil.omps_l3_daily_o3_pairing(mod.obj,obs_dat,'o3vmr')
# combine model and observations into paired dataset
obs_dat['o3vmr'] = (['time','x','y'],model_obsgrid.sel(time=slice(self.start_time.date(),self.end_time.date())).data)
obs_dat = obs.obj.sel(time=slice(self.start_time.date(),self.end_time.date()))#.copy()
mod_dat = mod.obj.sel(time=slice(self.start_time.date(),self.end_time.date()))
paired_obsgrid = sutil.omps_l3_daily_o3_pairing(mod_dat,obs_dat,keys[0])

p = pair()
p.type = obs.obs_type
p.obs = obs.label
p.model = mod.label
p.model_vars = keys
p.obs_vars = obs_vars
p.obj = obs_dat
p.obj = paired_obsgrid
label = '{}_{}'.format(p.obs,p.model)
self.paired[label] = p
elif obs.sat_type == 'mopitt_l3':
from .util import satellite_utilities as sutil
if mod.apply_ak:
model_obj = mod.obj[keys+['pres_pa_mid']]
# trim to only data within analysis window, as averaging kernels can't be applied outside it
obs_dat = obs.obj.sel(time=slice(self.start_time.date(),self.end_time.date()))#.copy()
model_obj = model_obj.sel(time=slice(self.start_time.date(),self.end_time.date()))#.copy()
# interpolate model to observation, calculate column with averaging kernels applied
paired = sutil.mopitt_l3_pairing(model_obj,obs_dat,keys[0])
p = pair()
p.type = obs.obs_type
p.obs = obs.label
p.model = mod.label
p.model_vars = keys
p.model_vars[0] += '_column_model'
p.obs_vars = obs_vars
p.obj = paired
label ='{}_{}'.format(p.obs,p.model)
self.paired[label] = p
else:
print("Pairing without averaging kernel has not been enabled for this dataset")
def concat_pairs(self):
"""Read and concatenate all observation and model time interval pair data,
populating the :attr:`paired` dict.
Expand All @@ -1167,7 +1195,7 @@ def concat_pairs(self):
None
"""
pass

### TODO: Create the plotting driver (most complicated one)
# def plotting(self):
def plotting(self):
Expand All @@ -1192,7 +1220,6 @@ def plotting(self):
from .plots import satplots as splots,savefig
else:
from .plots import surfplots as splots, savefig
from .plots import aircraftplots as airplots

# Disable figure count warning
initial_max_fig = plt.rcParams["figure.max_open_warning"]
Expand Down Expand Up @@ -1263,9 +1290,10 @@ def plotting(self):

pairdf_all = p.obj.swap_dims({'x':'time'})
# squash lat/lon dimensions into single dimension
elif obs_type == 'sat_grid_clm':
pairdf_all = p.obj.stack(ll=['x','y'])
pairdf_all = pairdf_all.rename_dims({'ll':'y'})
## 2024-03 MEB rechecking necessity of this.
#elif obs_type == 'sat_grid_clm':
# pairdf_all = p.obj.stack(ll=['x','y'])
# pairdf_all = pairdf_all.rename_dims({'ll':'y'})
else:
pairdf_all = p.obj
# Select only the analysis time window.
Expand Down Expand Up @@ -1461,7 +1489,9 @@ def plotting(self):
vmin = None
vmax = None
# Select time to use as index.
pairdf = pairdf.set_index(grp_dict['data_proc']['ts_select_time'])
# 2024-03-01 MEB needs to only apply if pandas. fails for xarray
if isinstance(pairdf,pd.core.frame.DataFrame):
pairdf = pairdf.set_index(grp_dict['data_proc']['ts_select_time'])
# Specify ts_avg_window if noted in yaml file. #qzr++
if 'ts_avg_window' in grp_dict['data_proc'].keys():
a_w = grp_dict['data_proc']['ts_avg_window']
Expand Down
16 changes: 10 additions & 6 deletions melodies_monet/plots/satplots.py
Original file line number Diff line number Diff line change
Expand Up @@ -668,8 +668,10 @@ def make_spatial_bias_gridded(df, column_o=None, label_o=None, column_m=None,
domain_type=None, domain_name=None, fig_dict=None,
text_dict=None,debug=False):

"""Creates difference plot for satellite and model data. Needs to be altered for cases where more than 1 overpass for a location,
eg. more than 1 day of data."""
"""Creates difference plot for satellite and model data.
For data in swath format, overplots all differences
For data on regular grid, mean difference.
"""
if debug == False:
plt.ioff()

Expand All @@ -691,8 +693,10 @@ def make_spatial_bias_gridded(df, column_o=None, label_o=None, column_m=None,
ylabel = column_o

#Take the difference for the model output - the sat output
diff_mod_min_obs = (df[column_o] - df[column_m]).squeeze()

diff_mod_min_obs = (df[column_m] - df[column_o]).squeeze()
#Take mean over time,
if len(diff_mod_min_obs.dims) == 3:
diff_mod_min_obs = diff_mod_min_obs.mean('time')

#Determine the domain
if domain_type == 'all' and domain_name == 'CONUS':
Expand Down Expand Up @@ -739,7 +743,7 @@ def make_spatial_bias_gridded(df, column_o=None, label_o=None, column_m=None,
c = ax.axes.scatter(df.longitude,df.latitude,c=diff_mod_min_obs,cmap=cmap,s=2,norm=norm)
plt.gcf().canvas.draw()
plt.tight_layout(pad=0)
plt.title(title_add + label_o + ' - ' + label_m,fontweight='bold',**text_kwargs)
plt.title(title_add + label_m + ' - ' + label_o,fontweight='bold',**text_kwargs)
ax.axes.set_extent(map_kwargs['extent'],crs=ccrs.PlateCarree())

#Uncomment these lines if you update above just to verify colorbars are identical.
Expand All @@ -757,7 +761,7 @@ def make_spatial_bias_gridded(df, column_o=None, label_o=None, column_m=None,
position_m = model_ax.get_position()
position_c = cax.get_position()
cax.set_position([position_c.x0, position_m.y0, position_c.x1 - position_c.x0, (position_m.y1-position_m.y0)*1.1])
cax.set_ylabel(ylabel,fontweight='bold',**text_kwargs)
cax.set_ylabel('$\Delta$'+ylabel,fontweight='bold',**text_kwargs)
cax.tick_params(labelsize=text_kwargs['fontsize']*0.8,length=10.0,width=2.0,grid_linewidth=2.0)

#plt.tight_layout(pad=0)
Expand Down
Loading
Loading