Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

utility script for making animations of forcing inputs #695

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
221 changes: 221 additions & 0 deletions utilities/plotting/forcing_animation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
#!/usr/bin/env python
"""
@author Nels J. Frazier
@date 01-02-2024
@version 0.0.0

Utility to generate animations in gif format in both gridded form
and catchment aggregated form. Use forcing_animation --help for
descriptions of options and required inputs.

"""
import geopandas as gpd
import matplotlib.pyplot as plt
#import PIL
#PIL.Image.MAX_IMAGE_PIXELS = 188745354+10000
from matplotlib.animation import FuncAnimation, PillowWriter, FFMpegWriter
import seaborn as sns
import xarray as xr
from functools import partial
import cartopy.crs as ccrs
import cartopy.feature as cfeature
#import pickle
import argparse
from pyogrio import read_dataframe

def plot_catchment_frame(ax, forecast, forcing, catchments, i):
t = forcing[i]
#each dataset is a slice of time
ts = t.time.dt.strftime("%Y-%m-%d %H:%M:%S").item()
ax.set_title(forecast+"\n"+ts+"\nPrecipitation", fontsize=20)
#don't plot new, update old!!!
ax.collections[0].set_array(t.values)
print("Plotting time ", i)
return ax

from matplotlib.collections import QuadMesh
def plot_grid_frame(ax, forecast, forcing, cmap, i):
#Get time at int index i
t = forcing['RAINRATE'][i:i+1]
ts = t.time.dt.strftime("%Y-%m-%d %H:%M:%S").item()
ax.axes.set_title(forecast+"\n"+ts+"\nPrecipitation", fontsize=20)
#update
ax.set_array(t[0].values)
print("Plotting time ", i)
return ax

cycles = ["Short", "Medium", "Long"]
sources = ['HRRR-RAP', 'CFS', 'GFS', 'Other']

parser = argparse.ArgumentParser()
#TODO add cariable arg
#TODO add cmap arg
parser.add_argument('-p', '--preview', help="Plot the first frame and view only", required=False, action="store_true")
parser.add_argument('-s', '--switch', help="switch the orientation of the colorbar from horizontal to vertical", required=False, action="store_true")
parser.add_argument('-d', '--dpi', required=False, default=100, help="Resolution to save gif", type=int)
parser.add_argument("source", choices=sources)
parser.add_argument("cycle", choices=cycles)
commands = parser.add_subparsers(dest="command")

h_commands = commands.add_parser("hydrofabric")
h_commands.add_argument('hydrofabric', metavar="hydrofabric geopackage", type=argparse.FileType('r'))
h_commands.add_argument('data', metavar="netcdf precip", type=argparse.FileType('r'))

g_commands = commands.add_parser("grid")
g_commands.add_argument('data', metavar="gridded netcdf precip", type=argparse.FileType('r'))

args = parser.parse_args()

forecast = args.cycle+" Range "+args.source
crs = ''
epsg = ''
if(args.command == 'hydrofabric'):
epsg = '5070'
crs = ccrs.epsg(epsg)
crs = ccrs.PlateCarree()
Comment on lines +74 to +75
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Which one is crs meant to be?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The pyproj 5070 epsg code enforces a projection boundary that clips off the southern part of the CONUS domain, so for now using the PlateCarree. See comment on line 160. I'll clean this up a bit, just wanted to get it published in some form.

elif(args.command == 'grid'):
epsg = '4326'
# doesn't work: crs= ccrs.epsg('4326')
crs = ccrs.PlateCarree() #NJF why this one???

forcing = xr.open_dataset(args.data.name, decode_cf=False)
forcing.time.attrs['units'] = forcing.time.attrs['reference_time']
forcing = xr.decode_cf(forcing)

###Setup general figure
#cmap = sns.color_palette('flare', as_cmap=True)
#Single hughe blue, really light on the 0 side...
#cmap = sns.color_palette('Blues', as_cmap=True)
#Little better constrast, still high desat on the low end
cmap = sns.color_palette("light:b", as_cmap=True)
#Reasonably good "blue ish" cube helix
#cmap = sns.color_palette("ch:start=.2,rot=-.2", as_cmap=True)

bkgrnd = sns.color_palette('flare', as_cmap=True)
#cmap.set_under(bkgrnd(50), alpha=0.05)
cmap.set_under("bisque", alpha=0.1)
e_color = 'none'
vmin = forcing['RAINRATE'].min().item()
vmin = 0.0009
Comment on lines +98 to +99
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Another duplicate assignment

vmax = forcing['RAINRATE'].max().item()

fig = plt.figure(figsize=(19.20, 10.80), dpi=100)
ax = plt.axes(projection=crs)
#plt.suptitle("Short Range")
if(args.switch):
cax = fig.add_axes([0.9, 0.1, 0.03, 0.8]) #vertical
orient = "vertical"
else:
cax = fig.add_axes([0.05, 0.05, 0.9, 0.03]) #horizontal
orient = "horizontal"
norm = plt.Normalize(vmin=vmin, vmax=vmax)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
# fake up the array of the scalar mappable. Urgh...
sm._A = []

cbar = fig.colorbar(sm, cax=cax, orientation=orient)
cbar.set_label(forcing['RAINRATE'].attrs['units'])
#ax = fig.gca()
ax.set_axis_off()
ax.title.set_size(20)

interval = 100
fps = 20
if(args.cycle == "Short"):
interval = 5
fps = 10

if(args.command == "hydrofabric"):
fs = forcing["catchment_ids"].to_series()
print( fs[ fs.duplicated() ].values)
# WAY faster reading with pyogrio and use_arrow (though just pyogrio is a significant imporvement!)
catchments = gpd.read_file(args.hydrofabric.name, layer="divides", include_fields=['divide_id'], engine='pyogrio', use_arrow=True)
# union = gpd.GeoSeries( catchments.unary_union, crs=catchments.crs)
union = gpd.read_file("domain.gpkg", engine='pyogrio')

print("Projecting domain to epsg:4326")
union = union.to_crs(epsg='4326')
catchments = catchments.to_crs(epsg='4326')

forcing = forcing.set_index({"catchment ids":"catchment_ids"}).to_array().squeeze().drop_vars('variable')
#Get the catchment geopandas index, strip to int for xarray index
cat_ids = catchments['divide_id'].apply(lambda x: int(x.split("-")[1]))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Presumably true at the time of writing, but does the hydrofabric work guarantee unique numeric IDs of catchments across the various kinds that potentially prefix them?

Actually, are there currently or plans for catchment IDs prefixed other than cat-NNNN, like we have for nexuses?

@mikejohnson51

#This is one way to re-org the data along the geopandas index
#forcing = forcing.loc[:, cat_ids.values]
#But this should be much faster!
#FIXME issues with duplicate ids in forcing files...
forcing = forcing.drop_duplicates("catchment ids")
forcing = forcing.reindex({"catchment ids":cat_ids.values})
# This was a good idea -- cache the axes, but won't work for general usage
# and also just doesn't work to deserialize the GeoAxes from cartopy...
# if( Path(".catchment_axes_caches").exists() ):
# with open('.catchment_axes_caches', 'rb') as cache:
# ax = pickle.load(cache)
# else:
# ax = catchments.plot(ax=ax, legend=False, edgecolor=e_color, facecolor='white')
# with open('.catchment_axes_caches', 'wb') as cache:
# pickle.dump(ax, cache)

# epsg 5070 projected bounds: -7013714.59 967179.63 -5299735.56 2630462.94
# This cuts off florida and texas!!! For now, just reproject to wgs84 and plot
# on the PlateCarree projection
# might consider trying
print("Plotting base...")
ax.add_geometries( union.geometry, facecolor="none", edgecolor="black", crs=crs)
#ax.set_extent( catchments.total_bounds, crs=crs )
box = catchments.total_bounds
ax.set_xlim((box[0], box[2]))
ax.set_ylim((box[1], box[3]))
ax = catchments.plot(ax=ax, legend=False, edgecolor=e_color, facecolor='white', vmin=vmin, vmax=vmax, norm=norm)
#FIXME try the union before projecting, then re-project the resulting geometry
# Turns out, this fixes the topology error, but is slow, for now hacking in Mike's outline
#ax.add_geometries( [catchments.unary_union], crs=crs, facecolor=None, edgecolor="black")
ax.collections[0].set_cmap(cmap)
ax.collections[0].set_clim(vmin, vmax)

#ax.add_feature(cfeature.STATES.with_scale('50m'))
if(args.preview):
plot_catchment_frame(ax, forecast, forcing, cat_ids, 6)
else:
ani = FuncAnimation(fig, partial(plot_catchment_frame, ax, forecast, forcing, cat_ids), frames=forcing.coords['time'].size, interval=interval)
elif(args.command == "grid"):
ax.add_feature(cfeature.STATES.with_scale('110m'))
ax = forcing['RAINRATE'].isel(time=0).plot(ax=ax, cmap=cmap, add_colorbar=False, vmin=vmin, vmax=vmax, norm=norm)
# print(ax)
#plt.show()
# os._exit(1)
#odr = cartopy.feature.NaturalEarthFeature(category='cultural',
#name='admin_0_boundary_lines_land', scale='50m', facecolor='none', alpha=0.7)
#ax.add_feature(odr)
if(args.preview):
plot_grid_frame( ax, forecast, forcing, cmap, 0)
else:
ani = FuncAnimation(fig, partial(plot_grid_frame, ax, forecast, forcing, cmap), frames=forcing.coords['time'].size, interval=interval)



# catchments = gpd.read_file("gauge_01073000.gpkg", layer="divides", include_fields=['divide_id'])
# forcing = xr.open_dataset("data/Long_Range_Hydrofabric_Precip.nc", decode_cf=False)

# forecast="Short Range" #TODO add product (CFS, GFS ect...)
# forecast="Long Range" #TODO add product (CFS, GFS ect...)


print("NUM FRAMES")
print(forcing.coords['time'].size)
#plot_frame(ax, 224)

#plt.show()

#ani.save("forcings_"+forecast.replace(" ","_")+".gif", dpi=1200, writer=PillowWriter(fps=20))
#plt.tight_layout()
#plt.subplots_adjust(top=0.85)
if(args.preview):
plt.show()
else:
#ani.save("forcings_"+forecast.replace(" ","_")+".mp4", writer=FFMpegWriter(fps=fps) )
ani.save(args.command+"_forcings_"+forecast.replace(" ","_")+".gif", writer="ffmpeg", dpi=args.dpi)
plt.close()
#plt.savefig("test.png", dpi=1200, bbox_inches='tight',
# transparent=True,
# pad_inches=0)