Releases: NSAPH-Software/CRE
Releases · NSAPH-Software/CRE
Release ver0.2.7
v0.2.6
v0.2.5
Added
- Add (vanilla) Stability Selection (without Error Control).
max_rules
hyper parameters for max rules filtering.- Uncertainty Quantification in estimation by bootstrapping.
B
hyper-parameter,subsample
hyper-parameter.rules
(implicit form) in cre() function return.- predict() function for ITE estimation via CRE.
Changed
- Type
stability_selection
binary -> string ('no','vanilla','error_control'). - Unify
ntrees_gbm
hyper-parameter andntrees_gbm
hyper-parameter in
ntrees
hyper-parameter. - In rules generation retrieve decision rules also from internal nodes, and not
just from terminal nodes. ite_method_dis
,ite_method_inf
method-parameter ->ite_method
.ps_method_dis
,ps_method_inf
method-parameter ->learner_ps
.oreg_method_dis
,oreg_method_inf
method-parameter ->learner_y
.
Removed
max_nodes
hyper-parameter.- Remove rules generation by Generalized Boosted Regression.
replace
hyper-parameter.penalty_rl
hyper-parameter.t_pvalue
hyper-parameter.ite_pred
from cre() function return.
Bug fixes
- Error saving covariates name in CRE result when using
intervention_vars
.
v0.2.4
v0.2.3
v0.2.2
v0.2.1
v0.2.0
Changed
offset
method-parameter -> hyper-parameterestimate_ite_poisson
function ->estimate_ite_tpoisson
max_dacay
hyper-parameter ->t_decay
.interpret_select_rules
function ->interpret_rules
.generate_causal_rules
function ->discover_rules
.discover_causal_rules
function ->select_rules
.offset_name
method parameter ->offset
.- Hyper and method parameters are no more required arguments for
cre
. cre
object: added parameters and ite estimation.
Added
- Synthetic data set with 1 or 3 rules (
generate_cre_dataset
). - S-Learner (
slearner
) method for ITE estimation. - T-Learner (
tlearner
) method for ITE estimation. - X-Learner (
xlearner
) method for ITE estimation. - Rules Selection description in
summary.cre
. verbose
parameter insummary.cre
.ite
, additionalcre
input parameter to use personalized ite
estimations.- Default values for hyper parameters.
- Default values for method parameters.
- Simulation experiments for estimation (
estimation.R
). - Simulation experiments for discovery (
discovery.R
). extract_effect_modifiers
function (utility for performance evaluation).evaluate
function for discovery evaluation.confounding
parameter ingenerate_cre_dataset
to set confounding type.ite_pred
andmodel
in CRE results.binary_covariates
parameter ingenerate_cre_dataset
to set covariates
domain.
Removed
include_ps_inf
method-parameter.include_ps_dis
method-parameter.oreg
method for ITE estimation.ipw
method for ITE estimation.sipw
method for ITE estimation.- ITE standard deviation estimation.
type_decay
hyper-parameter.- Keep only
linreg
for CATE estimation (removecate_method
and
cate_SL_library
parameters). method_params
andhyper_params
additional parameters insummary.cre
.- ite standardization for Rules Generation.
random_state
parameter.include_offset
method parameter.
Bug fixes
- Rules Generation Issue (set rules length and fix bootstrapping).
v0.1.0
Changed
select_causal_rules()
is nowlasso_rules_filter()
- rules generation now accepts replace parameter to set replacement in bootstrapping
- rename parameter
t
witht_anom
- add parameter
t_corr
discard correlation threshold - define
discard_anomalous_rules()
anddiscard_corre_rules()
functions and
and relative tests - reorganize
generate_rules_matrix()
(separate standardization, and remove filtering) - explicit
prune_rules()
function and add relative tests - remove
take1()
function for random Rule Selection - add effect modifiers filter for Rule Generation
- add
generate_causal_rules()
function and relative tests - solve Undesired 'All' Decision Rule Issue
- solve No Causal Rule Selected Issue
- improve
cre.summary()
function min_nodes
-->node_size
(following the randomForest convention)estimate_cate
include five methods for estimating the CATE values (poisson
,DRLearner
,bart-baggr
,cf-means
,linreg
)cre
added new arguments to (1) complementSuperLearner
package (ps_method_dis
,ps_method_inf
,or_method_dis
,or_method_inf
,cate_SL_library
) and to (2) select CATE method and (3) whether to filter CATE p-values (cate_method
andfilter_cate
).
Now returns an S3 object.estimate_ite_xyz
conduct propensity score estimation using helper function withSuperLearner
packagegenerate_cre_dataset
make number of covariates an argument of the function- improve examples and update tests for all functions
Added
print
andsummary
generic functions.check_input
function to isolate input checks.estimate_ite_aipw
function for augmented inverse propensity weightingplot.cre
generic function to plot CRE S3 object Resultstest-cre_functional.R
tests the functionality of the packagestability_selection
function for causal rules selection
Removed
estimate_ite_blp
function