-
Notifications
You must be signed in to change notification settings - Fork 54
nvFuser Python Benchmarks
The python benchmarks use pytest-benchmark
and torch.profiler
. Most of the CPP benchmarks have been ported to Python. The key differences as compared to the CPP interface are:
- Validation: Python benchmarks validate the nvFuser output against torch output to verify correctness.
- PyTorch baselines (
torch.compile
andeager
): Python benchmarks support benchmarking other executors such astorch.compile
andeager
. - Python benchmarks use CUPTI (through
torch.profiler
) for accurate and low-overhead kernel measurements.
To benchmark any target function, use run_benchmark
(python_benchmarks/core.py
):
run_benchmark(benchmark, target_function, function_inputs, iobytes=None)
Arguments:
- benchmark: pytest-benchmark fixture passed to every function intended to be run as a benchmark by pytest.
- target_function: Function to benchmark
- function_inputs: List of inputs to the target_function
- iobytes (Optional): This should be used for any executor other than nvFuser if the inputs/outputs are not the same as nvFuser. See PR #1725. By default, we compute the IObytes automatically based on the inputs/outputs of the target function.
Example:
# Parametrize over any number of arguments (e.g., input sizes, dtypes)
@pytest.mark.parametrize("param1", ...)
@pytest.mark.parametrize("param2", ...)
def test_example_benchmark(````
benchmark, param1, param2, ...
):
# Setup function inputs
run_benchmark(benchmark, target_function, function_inputs)
The benchmark name should start with test_
to be automatically discovered by pytest
.
-
Running a benchmark file:
NVFUSER_DISABLE=kernel_reuse pytest [options] <benchmark-file>
. -
Running the complete benchmark suite:
NVFUSER_DISABLE=kernel_reuse pytest [options] python_benchmarks/
-
Sharding: Pytest is memory-intensive resulting in CPU OOMs when running a large number of tests. Sharding is recommended when running the complete benchmarking suite. We use
pytest-shard
in our CI. To execute a specific shard withn
total shards:NVFUSER_DISABLE=kernel_reuse pytest --shard-id=i --num-shards=n [options]
wherei = {0..n-1}
. -
Running a subset of the inputs for any benchmark:
NVFUSER_DISABLE=kernel_reuse pytest <benchmark-file> --benchmark-num-inputs=10
. This will randomly sample 10 input sizes to run the given benchmark.
Note: It is recommended to disable kernel reuse to get reliable performance measurements in all benchmarks.
Pytest/Pytest-benchmark options:
- Filtering benchmarks:
-k <filter>
- Saving benchmarks:
--benchmark-save=NAME
,--benchmark-autosave
,--benchmark-json=PATH
- Debugging:
--benchmark-verbose
.
Custom command-line options:
- Disable output validation:
--disable-validation
Skips the output validation in the nvFuser benchmarks. - Disable benchmarking:
--disable-benchmarking
Skips the nvFuser benchmarking, useful for only testing correctness of fusion definitions without benchmarking the fusions. - Run eager mode benchmarks:
--benchmark-eager
- Run torch.compile mode benchmarks:
--benchmark-torchcompile
- Setting custom rounds / warmup-rounds:
--benchmark-rounds
and--benchmark-warmup-rounds
can be used to override the default values (rounds=10
,warmup_rounds=1
) - Running subset of input sizes:
--benchmark-num-inputs=n
will randomly samplen
input sizes out of the complete input set to run the benchmark. This is useful for testing new changes.
- Pytest: https://docs.pytest.org/en/stable/
- Pytest-benchmarks: https://pytest-benchmark.readthedocs.io/en/latest/index.html
- Pytest-shard: https://pypi.org/project/pytest-shard/