-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f8fa42a
commit b79ef8a
Showing
205 changed files
with
20,373 additions
and
14,657 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
120 changes: 120 additions & 0 deletions
120
_downloads/29c17f8c7171976309d720e2b031e77e/test_debugging_api.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import unittest | ||
|
||
import numpy as np | ||
import torch | ||
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner | ||
from torch import nn | ||
|
||
import tensorrt_llm | ||
from tensorrt_llm import Module, Tensor | ||
|
||
|
||
class TorchMLP(nn.Module): | ||
|
||
def __init__(self, hidden_size, ffn_hidden_size, bias=True): | ||
super().__init__() | ||
self.fc = nn.Linear(hidden_size, ffn_hidden_size, bias=bias) | ||
self.proj = nn.Linear(ffn_hidden_size, hidden_size, bias=bias) | ||
|
||
def forward(self, hidden_states): | ||
inter = self.fc(hidden_states) | ||
inter = nn.functional.relu(inter) | ||
output = self.proj(inter) | ||
return output, inter | ||
|
||
|
||
class MLP(Module): | ||
|
||
def __init__(self, | ||
hidden_size, | ||
ffn_hidden_size, | ||
bias=True, | ||
tp_group=None, | ||
tp_size=1): | ||
super().__init__() | ||
self.fc = tensorrt_llm.layers.ColumnLinear(hidden_size, | ||
ffn_hidden_size, | ||
bias=bias, | ||
tp_group=tp_group, | ||
tp_size=tp_size, | ||
gather_output=False) | ||
self.proj = tensorrt_llm.layers.RowLinear(ffn_hidden_size, | ||
hidden_size, | ||
bias=bias, | ||
tp_group=tp_group, | ||
tp_size=tp_size) | ||
|
||
def forward(self, hidden_states): | ||
inter = self.fc(hidden_states) | ||
inter = tensorrt_llm.functional.relu(inter) | ||
self.register_network_output('inter', inter) | ||
output = self.proj(inter) | ||
return output | ||
|
||
|
||
class TestDebuggingAPI(unittest.TestCase): | ||
|
||
def setUp(self): | ||
tensorrt_llm.logger.set_level('error') | ||
|
||
def test_debugging_api(self): | ||
# test data | ||
dtype = 'float32' | ||
hidden_size = 768 | ||
x_data = torch.randn(2, 16, hidden_size) | ||
|
||
tm = TorchMLP(hidden_size=hidden_size, | ||
ffn_hidden_size=hidden_size * 4, | ||
bias=False) | ||
|
||
# construct trt network | ||
builder = tensorrt_llm.Builder() | ||
net = builder.create_network() | ||
with tensorrt_llm.net_guard(net): | ||
x = Tensor(name='x', | ||
shape=x_data.shape, | ||
dtype=tensorrt_llm.str_dtype_to_trt(dtype)) | ||
|
||
gm = MLP(hidden_size=hidden_size, | ||
ffn_hidden_size=4 * hidden_size, | ||
bias=False) | ||
gm.fc.weight.value = tm.fc.weight.detach().cpu().numpy() | ||
gm.proj.weight.value = tm.proj.weight.detach().cpu().numpy() | ||
|
||
output = gm.forward(x) | ||
net._mark_output(output, 'output', | ||
tensorrt_llm.str_dtype_to_trt(dtype)) | ||
|
||
for k, v in gm.named_network_outputs(): | ||
net._mark_output(v, k, tensorrt_llm.str_dtype_to_trt(dtype)) | ||
|
||
# trt run | ||
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) | ||
with TrtRunner(build_engine) as runner: | ||
outputs = runner.infer(feed_dict={'x': x_data.numpy()}) | ||
|
||
# pytorch run | ||
with torch.no_grad(): | ||
ref1, ref2 = tm(x_data) | ||
|
||
# compare diff | ||
np.testing.assert_allclose(ref1.cpu().numpy(), | ||
outputs['output'], | ||
atol=1e-5) | ||
np.testing.assert_allclose(ref2.cpu().numpy(), | ||
outputs['inter'], | ||
atol=1e-5) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.