-
Notifications
You must be signed in to change notification settings - Fork 66
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Optimize Hive hash
computation for nested types
#2720
base: branch-25.02
Are you sure you want to change the base?
Changes from 3 commits
92921f1
a77dff5
97b9644
1857bdd
ad84406
a3fe1c7
9b43b03
71f7df9
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
/* | ||
* Copyright (c) 2023-2024, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <benchmarks/common/generate_input.hpp> | ||
|
||
#include <cudf_test/column_utilities.hpp> | ||
|
||
#include <cudf/io/types.hpp> | ||
|
||
#include <hash.hpp> | ||
#include <nvbench/nvbench.cuh> | ||
|
||
constexpr auto min_width = 10; | ||
constexpr auto max_width = 10; | ||
|
||
static void hash(nvbench::state& state) | ||
{ | ||
std::size_t const size_bytes = static_cast<cudf::size_type>(state.get_int64("size_bytes")); | ||
// cudf::size_type const list_depth = static_cast<cudf::size_type>(state.get_int64("list_depth")); | ||
|
||
data_profile const table_profile = | ||
data_profile_builder() | ||
.no_validity() | ||
//.distribution(cudf::type_id::LIST, distribution_id::NORMAL, min_width, max_width) | ||
//.list_depth(list_depth) | ||
//.list_type(cudf::type_id::INT32); | ||
.struct_types(std::vector<cudf::type_id>{ | ||
cudf::type_id::BOOL8, cudf::type_id::INT32, cudf::type_id::FLOAT32}); | ||
|
||
auto const input_table = create_random_table( | ||
std::vector<cudf::type_id>{cudf::type_id::STRUCT}, table_size_bytes{size_bytes}, table_profile); | ||
|
||
auto const stream = cudf::get_default_stream(); | ||
state.set_cuda_stream(nvbench::make_cuda_stream_view(stream.value())); | ||
state.exec(nvbench::exec_tag::timer | nvbench::exec_tag::sync, | ||
[&](nvbench::launch& launch, auto& timer) { | ||
timer.start(); | ||
auto const output = spark_rapids_jni::hive_hash(*input_table); | ||
stream.synchronize(); | ||
timer.stop(); | ||
}); | ||
|
||
auto const time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value"); | ||
state.add_global_memory_reads<nvbench::int8_t>(size_bytes); | ||
} | ||
|
||
NVBENCH_BENCH(hash).set_name("hash").add_int64_axis( | ||
"size_bytes", | ||
{50'000'000, | ||
100'000'000, | ||
250'000'000, | ||
500'000'000, | ||
1'000'000'000}); // 50MB, 100MB, 250MB, 500MB, 1GB | ||
//.add_int64_axis("list_depth", {1, 2, 4}); | ||
ustcfy marked this conversation as resolved.
Show resolved
Hide resolved
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -19,6 +19,7 @@ | |
|
||
#include <cudf/column/column_factories.hpp> | ||
#include <cudf/detail/utilities/vector_factories.hpp> | ||
#include <cudf/structs/structs_column_view.hpp> | ||
#include <cudf/table/experimental/row_operators.cuh> | ||
#include <cudf/table/table_device_view.cuh> | ||
|
||
|
@@ -161,8 +162,16 @@ hive_hash_value_t __device__ inline hive_hash_function<cudf::timestamp_us>::oper | |
template <template <typename> class hash_function, typename Nullate> | ||
class hive_device_row_hasher { | ||
public: | ||
CUDF_HOST_DEVICE hive_device_row_hasher(Nullate check_nulls, cudf::table_device_view t) noexcept | ||
: _check_nulls{check_nulls}, _table{t} | ||
CUDF_HOST_DEVICE hive_device_row_hasher(Nullate check_nulls, | ||
cudf::table_device_view t, | ||
cudf::column_device_view* flattened_column_views, | ||
cudf::size_type* first_child_index, | ||
cudf::size_type* nested_column_map) noexcept | ||
: _check_nulls{check_nulls}, | ||
_table{t}, | ||
_flattened_column_views{flattened_column_views}, | ||
_first_child_index{first_child_index}, | ||
_nested_column_map{nested_column_map} | ||
{ | ||
// Error out if passed an unsupported hash_function | ||
static_assert(std::is_base_of_v<hive_hash_function<int>, hash_function<int>>, | ||
|
@@ -182,9 +191,19 @@ class hive_device_row_hasher { | |
_table.end(), | ||
HIVE_INIT_HASH, | ||
cuda::proclaim_return_type<hive_hash_value_t>( | ||
[row_index, nulls = this->_check_nulls] __device__(auto hash, auto const& column) { | ||
auto cur_hash = | ||
cudf::type_dispatcher(column.type(), element_hasher_adapter{nulls}, column, row_index); | ||
[row_index, | ||
nulls = this->_check_nulls, | ||
table = this->_table, | ||
flattened_column_views = this->_flattened_column_views, | ||
first_child_index = this->_first_child_index, | ||
nested_column_map = this->_nested_column_map] __device__(auto hash, auto const& column) { | ||
cudf::size_type col_idx = &column - table.begin(); | ||
auto cur_hash = cudf::type_dispatcher( | ||
column.type(), | ||
element_hasher_adapter{ | ||
nulls, col_idx, flattened_column_views, first_child_index, nested_column_map}, | ||
column, | ||
row_index); | ||
return HIVE_HASH_FACTOR * hash + cur_hash; | ||
})); | ||
} | ||
|
@@ -197,8 +216,16 @@ class hive_device_row_hasher { | |
public: | ||
using hash_functor_t = cudf::experimental::row::hash::element_hasher<hash_function, Nullate>; | ||
|
||
__device__ element_hasher_adapter(Nullate check_nulls) noexcept | ||
: hash_functor{check_nulls, HIVE_INIT_HASH, HIVE_INIT_HASH} | ||
__device__ element_hasher_adapter(Nullate check_nulls, | ||
cudf::size_type col_idx, | ||
cudf::column_device_view* flattened_column_views, | ||
cudf::size_type* first_child_index, | ||
cudf::size_type* nested_column_map) noexcept | ||
: hash_functor{check_nulls, HIVE_INIT_HASH, HIVE_INIT_HASH}, | ||
_col_idx{col_idx}, | ||
_flattened_column_views{flattened_column_views}, | ||
_first_child_index{first_child_index}, | ||
_nested_column_map{nested_column_map} | ||
{ | ||
} | ||
|
||
|
@@ -214,16 +241,16 @@ class hive_device_row_hasher { | |
*/ | ||
struct col_stack_frame { | ||
private: | ||
cudf::column_device_view _column; // the column has only one row | ||
hive_hash_value_t _cur_hash; // current hash value of the column | ||
int _idx_to_process; // the index of child or element to process next | ||
cudf::size_type _col_idx; // the column has only one row | ||
ustcfy marked this conversation as resolved.
Show resolved
Hide resolved
|
||
cudf::size_type _row_idx; // the index of the row in the column | ||
int _idx_to_process; // the index of child or element to process next | ||
hive_hash_value_t _cur_hash; // current hash value of the column | ||
|
||
public: | ||
__device__ col_stack_frame() = | ||
delete; // Because the default constructor of `cudf::column_device_view` is deleted | ||
__device__ col_stack_frame() = default; | ||
|
||
__device__ col_stack_frame(cudf::column_device_view col) | ||
: _column(std::move(col)), _idx_to_process(0), _cur_hash(HIVE_INIT_HASH) | ||
__device__ col_stack_frame(cudf::size_type col_idx, cudf::size_type row_idx) | ||
: _col_idx(col_idx), _row_idx(row_idx), _cur_hash(HIVE_INIT_HASH), _idx_to_process(0) | ||
{ | ||
} | ||
|
||
|
@@ -238,7 +265,9 @@ class hive_device_row_hasher { | |
|
||
__device__ int get_idx_to_process() { return _idx_to_process; } | ||
|
||
__device__ cudf::column_device_view get_column() { return _column; } | ||
__device__ cudf::size_type get_col_idx() { return _col_idx; } | ||
|
||
__device__ cudf::size_type get_row_idx() { return _row_idx; } | ||
}; | ||
|
||
/** | ||
|
@@ -363,53 +392,57 @@ class hive_device_row_hasher { | |
__device__ hive_hash_value_t operator()(cudf::column_device_view const& col, | ||
cudf::size_type row_index) const noexcept | ||
{ | ||
cudf::column_device_view curr_col = col.slice(row_index, 1); | ||
// The default constructor of `col_stack_frame` is deleted, so it can not allocate an array | ||
// of `col_stack_frame` directly. | ||
// Instead leverage the byte array to create the col_stack_frame array. | ||
alignas(col_stack_frame) char stack_wrapper[sizeof(col_stack_frame) * MAX_STACK_DEPTH]; | ||
auto col_stack = reinterpret_cast<col_stack_frame*>(stack_wrapper); | ||
int stack_size = 0; | ||
cudf::size_type curr_col_idx = _nested_column_map[this->_col_idx]; | ||
cudf::size_type curr_row_idx = row_index; | ||
|
||
col_stack[stack_size++] = col_stack_frame(curr_col); | ||
col_stack_frame col_stack[MAX_STACK_DEPTH]; | ||
int stack_size = 0; | ||
col_stack[stack_size++] = col_stack_frame(curr_col_idx, curr_row_idx); | ||
|
||
while (stack_size > 0) { | ||
col_stack_frame& top = col_stack[stack_size - 1]; | ||
curr_col = top.get_column(); | ||
curr_col_idx = top.get_col_idx(); | ||
curr_row_idx = top.get_row_idx(); | ||
auto const& curr_col = _flattened_column_views[curr_col_idx]; | ||
// Do not pop it until it is processed. The definition of `processed` is: | ||
// - For structs, it is when all child columns are processed. | ||
// - For lists, it is when all elements in the list are processed. | ||
if (curr_col.type().id() == cudf::type_id::STRUCT) { | ||
if (top.get_idx_to_process() == curr_col.num_child_columns()) { | ||
if (--stack_size > 0) { col_stack[stack_size - 1].update_cur_hash(top.get_hash()); } | ||
} else { | ||
auto const structcv = cudf::detail::structs_column_device_view(curr_col); | ||
while (top.get_idx_to_process() < curr_col.num_child_columns()) { | ||
auto idx = top.get_and_inc_idx_to_process(); | ||
auto const child_col = structcv.get_sliced_child(idx); | ||
auto idx = top.get_and_inc_idx_to_process(); | ||
auto child_col_idx = _first_child_index[curr_col_idx] + idx; | ||
auto const& child_col = _flattened_column_views[child_col_idx]; | ||
// If the child is of primitive type, accumulate child hash into struct hash | ||
if (child_col.type().id() != cudf::type_id::LIST && | ||
child_col.type().id() != cudf::type_id::STRUCT) { | ||
auto child_hash = | ||
cudf::type_dispatcher<cudf::experimental::dispatch_void_if_nested>( | ||
child_col.type(), this->hash_functor, child_col, 0); | ||
child_col.type(), this->hash_functor, child_col, curr_row_idx); | ||
top.update_cur_hash(child_hash); | ||
} else { | ||
col_stack[stack_size++] = col_stack_frame(child_col); | ||
col_stack[stack_size++] = col_stack_frame(child_col_idx, curr_row_idx); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. IMHO, it is better to update the array element(col_stack_frame) inplacely instead of creating a new object. |
||
break; | ||
} | ||
} | ||
} | ||
} else if (curr_col.type().id() == cudf::type_id::LIST) { | ||
// Get the child column of the list column | ||
cudf::column_device_view child_col = | ||
cudf::detail::lists_column_device_view(curr_col).get_sliced_child(); | ||
auto offset_col_idx = _first_child_index[curr_col_idx]; | ||
auto child_col_idx = offset_col_idx + 1; | ||
auto const& offsets_col = _flattened_column_views[offset_col_idx]; | ||
auto const& child_col = _flattened_column_views[child_col_idx]; | ||
auto child_row_idx_begin = offsets_col.element<cudf::size_type>(curr_row_idx); | ||
auto child_row_idx_end = offsets_col.element<cudf::size_type>(curr_row_idx + 1); | ||
|
||
// If the child column is of primitive type, directly compute the hash value of the list | ||
if (child_col.type().id() != cudf::type_id::LIST && | ||
child_col.type().id() != cudf::type_id::STRUCT) { | ||
auto single_level_list_hash = cudf::detail::accumulate( | ||
thrust::counting_iterator(0), | ||
thrust::counting_iterator(child_col.size()), | ||
thrust::counting_iterator(child_row_idx_begin), | ||
thrust::counting_iterator(child_row_idx_end), | ||
HIVE_INIT_HASH, | ||
[child_col, hasher = this->hash_functor] __device__(auto hash, auto element_index) { | ||
auto cur_hash = cudf::type_dispatcher<cudf::experimental::dispatch_void_if_nested>( | ||
|
@@ -419,12 +452,12 @@ class hive_device_row_hasher { | |
top.update_cur_hash(single_level_list_hash); | ||
sperlingxx marked this conversation as resolved.
Show resolved
Hide resolved
|
||
if (--stack_size > 0) { col_stack[stack_size - 1].update_cur_hash(top.get_hash()); } | ||
} else { | ||
if (top.get_idx_to_process() == child_col.size()) { | ||
if (top.get_idx_to_process() == child_row_idx_end - child_row_idx_begin) { | ||
if (--stack_size > 0) { col_stack[stack_size - 1].update_cur_hash(top.get_hash()); } | ||
} else { | ||
// Push the next element into the stack | ||
col_stack[stack_size++] = | ||
col_stack_frame(child_col.slice(top.get_and_inc_idx_to_process(), 1)); | ||
col_stack[stack_size++] = col_stack_frame( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same as above |
||
child_col_idx, child_row_idx_begin + top.get_and_inc_idx_to_process()); | ||
} | ||
} | ||
} | ||
|
@@ -434,10 +467,17 @@ class hive_device_row_hasher { | |
|
||
private: | ||
hash_functor_t const hash_functor; | ||
cudf::size_type const _col_idx; | ||
cudf::column_device_view* _flattened_column_views; | ||
cudf::size_type* _first_child_index; | ||
cudf::size_type* _nested_column_map; | ||
}; | ||
|
||
Nullate const _check_nulls; | ||
cudf::table_device_view const _table; | ||
cudf::column_device_view* _flattened_column_views; | ||
cudf::size_type* _first_child_index; | ||
cudf::size_type* _nested_column_map; | ||
}; | ||
|
||
void check_nested_depth(cudf::table_view const& input) | ||
|
@@ -486,15 +526,74 @@ std::unique_ptr<cudf::column> hive_hash(cudf::table_view const& input, | |
|
||
check_nested_depth(input); | ||
|
||
// `flattened_column_views` only contains nested columns and columns that result from flattening | ||
// nested columns | ||
std::vector<cudf::column_view> flattened_column_views; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The column view constructor will calculate null count which is time consuming. |
||
// `first_child_index` has the same size as `flattened_column_views` | ||
std::vector<cudf::size_type> first_child_index; | ||
// `nested_column_map` has the same size as `input.num_columns()`, and it maps the column index in | ||
// `input` to the index in `flattened_column_views` | ||
std::vector<cudf::size_type> nested_column_map; | ||
// Construct the `flattened_column_views` by level order traversal | ||
for (auto i = 0; i < input.num_columns(); i++) { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. extract a function like |
||
cudf::column_view col = input.column(i); | ||
if (col.type().id() == cudf::type_id::LIST || col.type().id() == cudf::type_id::STRUCT) { | ||
nested_column_map.push_back(flattened_column_views.size()); | ||
flattened_column_views.push_back(col); | ||
// flattened_column_views[idx] is the next column to process | ||
for (auto idx = nested_column_map.back(); | ||
idx < static_cast<cudf::size_type>(flattened_column_views.size()); | ||
idx++) { | ||
col = flattened_column_views[idx]; | ||
if (col.type().id() == cudf::type_id::LIST) { | ||
first_child_index.push_back(flattened_column_views.size()); | ||
flattened_column_views.push_back(cudf::lists_column_view(col).offsets()); | ||
flattened_column_views.push_back(cudf::lists_column_view(col).get_sliced_child(stream)); | ||
} else if (col.type().id() == cudf::type_id::STRUCT) { | ||
first_child_index.push_back(flattened_column_views.size()); | ||
for (auto child_idx = 0; child_idx < col.num_children(); child_idx++) { | ||
flattened_column_views.push_back( | ||
cudf::structs_column_view(col).get_sliced_child(child_idx, stream)); | ||
} | ||
} else { | ||
first_child_index.push_back(-1); | ||
} | ||
} | ||
} else { | ||
nested_column_map.push_back(-1); | ||
} | ||
} | ||
|
||
std::vector<cudf::column_device_view> device_flattened_column_views; | ||
device_flattened_column_views.reserve(flattened_column_views.size()); | ||
|
||
for (auto const& col : flattened_column_views) { | ||
auto const device_view = cudf::column_device_view::create(col, stream); | ||
device_flattened_column_views.push_back(*device_view); | ||
} | ||
|
||
auto flattened_column_device_views = | ||
cudf::detail::make_device_uvector_async(device_flattened_column_views, stream, mr); | ||
auto first_child_index_view = | ||
cudf::detail::make_device_uvector_async(first_child_index, stream, mr); | ||
auto nested_column_map_view = | ||
cudf::detail::make_device_uvector_async(nested_column_map, stream, mr); | ||
Comment on lines
+572
to
+575
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The memory resource Currently they are the same but this is required for future evolution of libcudf. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. And please check if there are similar situations in the other places that need to be changed. |
||
stream.synchronize(); | ||
|
||
bool const nullable = has_nested_nulls(input); | ||
auto const input_view = cudf::table_device_view::create(input, stream); | ||
auto output_view = output->mutable_view(); | ||
|
||
// Compute the hash value for each row | ||
thrust::tabulate(rmm::exec_policy(stream), | ||
output_view.begin<hive_hash_value_t>(), | ||
output_view.end<hive_hash_value_t>(), | ||
hive_device_row_hasher<hive_hash_function, bool>(nullable, *input_view)); | ||
thrust::tabulate( | ||
rmm::exec_policy(stream), | ||
output_view.begin<hive_hash_value_t>(), | ||
output_view.end<hive_hash_value_t>(), | ||
hive_device_row_hasher<hive_hash_function, bool>(nullable, | ||
*input_view, | ||
flattened_column_device_views.data(), | ||
first_child_index_view.data(), | ||
nested_column_map_view.data())); | ||
|
||
return output; | ||
} | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Should this two be removed?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The optimization effect is related to the schema, and I'm not sure how to write the benchmark for a good comparison.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The benchmark should support running either (or both) lists and structs. You can switch benchmark types using a boolean flag. That flag should not be
constexpr
so we can compile all the code to verify syntax.