Medical Image Reconstruction - Dermoscopic images
An official implementation of a Single image reconstruction technique for Melanoma Skin lesion images for feature extraction using PyTorch.
Matlab R2019
Python 3.10.10
PyTorch 1.4
Pillow 5.1.0
scikit-image 0.19.3
numpy 1.14.5
This was tested on Python 3.7. To install the required packages, use the provided requirements.txt file like so:
pip install -r requirements.txt
ISIC Challenge Datasets 2020 https://challenge.isic-archive.com/data/#2020
PH2 Dataset https://www.dropbox.com/s/k88qukc20ljnbuo/PH2Dataset.rar
MELLiResNet
MELIIGAN
https://drive.google.com/file/d/1FV0T8C_0Z6oMUuvOq9ELs6EsXqxLuS5O/view?usp=share_link
The provided model was trained on ISIC 2019, PH2 dataset and mednode image inputs, but to run it on inputs of arbitrary size, you'll have to change the input shape as given.
from tensorflow import keras
# Load the model
model = keras.models.load_model('models/generator.h5')
# Define arbitrary spatial dims, and 3 channels.
inputs = keras.Input((None, None, 3))
# Trace out the graph using the input:
outputs = model(inputs)
# Override the model:
model = keras.models.Model(inputs, outputs)
# Now you are free to predict on images of any size.
The experimental results on the benchmark datasets.
Algorithm | Bicubic | ESPCN | SRGAN | ESRGAN | MELIIGAN (MY model) | |
---|---|---|---|---|---|---|
ISIC 2020 | PSNR | 22.42 | 23.61 | 25.03 | 27.28 | 32.87 |
Dataset | SSIM | 0.7304 | 0.7602 | 0.7941 | 0.8203 | 0.8249 |
PH2 | PSNR | 22.02 | 23.21 | 25.73 | 28.88 | 32.89 |
Dataset | SSIM | 0.7164 | 0.7462 | 0.7601 | 0.7863 | 0.9100 |
Med node | PSNR | 21.23 | 23.5 | 24.20 | 28.63 | 33.49 |
Dataset | SSIM | 0.6504 | 0.7002 | 0.7941 | 0.8003 | 0.9082 |
The queries and comments on my codes can be forwarded to [email protected]
Made with contributors-img