Skip to content

Commit

Permalink
remove_multivariate
Browse files Browse the repository at this point in the history
  • Loading branch information
elephaint committed Apr 22, 2024
1 parent 176dd41 commit 333c067
Show file tree
Hide file tree
Showing 2 changed files with 1 addition and 6 deletions.
2 changes: 1 addition & 1 deletion action_files/test_models/src/evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ def evaluate(model: str, dataset: str, group: str):
groups = ['Monthly']
models = ['AutoDilatedRNN', 'RNN', 'TCN', 'DeepAR',
'NHITS', 'TFT', 'AutoMLP', 'DLinear', 'VanillaTransformer',
'BiTCN', 'TiDE', 'TSMixer', 'iTransformer']
'BiTCN', 'TiDE']
datasets = ['M3']
evaluation = [evaluate(model, dataset, group) for model, group in product(models, groups) for dataset in datasets]
evaluation = [eval_ for eval_ in evaluation if eval_ is not None]
Expand Down
5 changes: 0 additions & 5 deletions action_files/test_models/src/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,8 +26,6 @@
# from neuralforecast.models.autoformer import Autoformer
# from neuralforecast.models.patchtst import PatchTST
from neuralforecast.models.dlinear import DLinear
from neuralforecast.models.tsmixer import TSMixer
from neuralforecast.models.itransformer import iTransformer
from neuralforecast.models.bitcn import BiTCN
from neuralforecast.models.tide import TiDE

Expand Down Expand Up @@ -66,7 +64,6 @@ def main(dataset: str = 'M3', group: str = 'Monthly') -> None:
"val_check_steps": 100,
"random_seed": tune.choice([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),}

n_series = train['unique_id'].nunique()
models = [
AutoDilatedRNN(h=horizon, loss=MAE(), config=config_drnn, num_samples=2, cpus=1),
RNN(h=horizon, input_size=2 * horizon, encoder_hidden_size=50, max_steps=300),
Expand All @@ -79,8 +76,6 @@ def main(dataset: str = 'M3', group: str = 'Monthly') -> None:
DeepAR(h=horizon, input_size=2 * horizon, scaler_type='minmax1', max_steps=1000),
BiTCN(h=horizon, input_size=2 * horizon, loss=MAE(), dropout=0.0, max_steps=1000, val_check_steps=500),
TiDE(h=horizon, input_size=2 * horizon, loss=MAE(), max_steps=1000, val_check_steps=500),
TSMixer(h=horizon, input_size=2 * horizon, n_series=n_series, loss=MAE(), max_steps=1000, val_check_steps=500),
iTransformer(h=horizon, input_size=2 * horizon, n_series=n_series, loss=MAE(), max_steps=1000, val_check_steps=500),
]

# Models
Expand Down

0 comments on commit 333c067

Please sign in to comment.