This folder contains reference training scripts for semantic segmentation. They serve as a log of how to train specific models, as provide baseline training and evaluation scripts to quickly bootstrap research.
All models have been trained on 8x V100 GPUs.
You must modify the following flags:
--data-path=/path/to/dataset
--nproc_per_node=<number_of_gpus_available>
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet50 --aux-loss --weights-backbone ResNet50_Weights.IMAGENET1K_V1
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet101 --aux-loss --weights-backbone ResNet101_Weights.IMAGENET1K_V1
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet50 --aux-loss --weights-backbone ResNet50_Weights.IMAGENET1K_V1
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet101 --aux-loss --weights-backbone ResNet101_Weights.IMAGENET1K_V1
torchrun --nproc_per_node=8 train.py --dataset coco -b 4 --model deeplabv3_mobilenet_v3_large --aux-loss --wd 0.000001 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1
torchrun --nproc_per_node=8 train.py --dataset coco -b 4 --model lraspp_mobilenet_v3_large --wd 0.000001 --weights-backbone MobileNet_V3_Large_Weights.IMAGENET1K_V1
Support models: fcn_resnet50, fcn_resnet101
torchrun --nproc_per_node=8 train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet50 --aux-loss --weights-backbone ResNet50_Weights.IMAGENET1K_V1
Visit netspresso.ai and compress the model. You can get step by step guide from here.
You need to set the compressed model path using --model
and use --netspresso
to train the compressed model.
torchrun --nproc_per_node=8 train.py --lr 0.002 --dataset coco -b 4 --model path_to_compressed_model_file --aux-loss --netspresso