This project addresses the long-tailed distribution problem in vision-language models, specifically focusing on improving CLIP (Contrastive Language-Image Pre-training) performance in low-resource learning scenarios.
The research explores various adaptation techniques to enhance model performance on datasets with imbalanced class distributions.
The project is part of Trends & Applications of Computer Vision course. MSc in Artificial Intelligence Systems at University of Trento.
-
- Efficiently tunes transformer layers
- Reduces trainable parameters
- Preserves model speed and computational efficiency
-
Bias-terms Fine-tuning (BitFit)
- Adjusts model bias terms
- Exposes existing model knowledge
- Keeps most parameters frozen
-
- Facilitates online adaptation with minimal examples
- Uses cross-attention for feature alignment
- Implements meta-learning approach
-
Label Preserving & Breaking Data Augmentation
- Generates augmented training data using Stable Diffusion
- Creates label-preserving and label-breaking images
- Introduces diversity while maintaining semantic integrity
# Clone the repository
git clone https://github.com/your-username/low-resource-vision-clip.git
# Create virtual environment
python -m venv venv
source venv/bin/activate
# Install dependencies
pip install -r requirements.txt
# Example training command
python main.py --dataset circuits
--root_path data/circuits/
--shots 16
--enable_lora
--enable_BitFit
--enable_MetaAdapter
--enable_breaking_loss
--dataset
: Choose dataset (e.g., 'eurosat', 'circuits')--root_path
: Path of the data--shots
: Number of few-shot examples--backbone
: CLIP model backbone (default: 'ViT-B/16')--enable_lora
: Enable Low-Rank Adaptation--enable_BitFit
: Enable Bias-terms Fine-tuning--enable_MetaAdapter
: Enable Meta-Adapter--enable_breaking_loss
: Enable Breaking Loss
If you use this work in your research, please cite:
@article{LorenziCazzolaFacchini2024LowResourceVision,
title={CLIP on Low-Resource Vision},
author={Lorenzi, Alessandro and Cazzola, Luca and Facchini, Omar},
year={2024},
institution={University of Trento}
}
- Alessandro Lorenzi
- Luca Cazzola
- Omar Facchini