Skip to content

Project for Trends and Applications of Computer Vision for UniTN

Notifications You must be signed in to change notification settings

OmarFacchini/LowResourcesFewShot-CLIP

Repository files navigation

CLIP on low-resource vision

Overview

This project addresses the long-tailed distribution problem in vision-language models, specifically focusing on improving CLIP (Contrastive Language-Image Pre-training) performance in low-resource learning scenarios.

The research explores various adaptation techniques to enhance model performance on datasets with imbalanced class distributions.

The project is part of Trends & Applications of Computer Vision course. MSc in Artificial Intelligence Systems at University of Trento.

Key Features

Adaptation Techniques

  1. Low-Rank Adaptation (LoRA)

    • Efficiently tunes transformer layers
    • Reduces trainable parameters
    • Preserves model speed and computational efficiency
  2. Bias-terms Fine-tuning (BitFit)

    • Adjusts model bias terms
    • Exposes existing model knowledge
    • Keeps most parameters frozen
  3. Meta-Adapter

    • Facilitates online adaptation with minimal examples
    • Uses cross-attention for feature alignment
    • Implements meta-learning approach
  4. Label Preserving & Breaking Data Augmentation

    • Generates augmented training data using Stable Diffusion
    • Creates label-preserving and label-breaking images
    • Introduces diversity while maintaining semantic integrity

Experimental Datasets

  1. EuroSAT
  2. Circuits-diagrams

Installation

# Clone the repository
git clone https://github.com/your-username/low-resource-vision-clip.git

# Create virtual environment
python -m venv venv
source venv/bin/activate

# Install dependencies
pip install -r requirements.txt

Usage

# Example training command
python main.py --dataset circuits 
               --root_path data/circuits/
               --shots 16 
               --enable_lora 
               --enable_BitFit 
               --enable_MetaAdapter
               --enable_breaking_loss

Key Arguments

  • --dataset: Choose dataset (e.g., 'eurosat', 'circuits')
  • --root_path: Path of the data
  • --shots: Number of few-shot examples
  • --backbone: CLIP model backbone (default: 'ViT-B/16')
  • --enable_lora: Enable Low-Rank Adaptation
  • --enable_BitFit: Enable Bias-terms Fine-tuning
  • --enable_MetaAdapter: Enable Meta-Adapter
  • --enable_breaking_loss: Enable Breaking Loss

Citation

If you use this work in your research, please cite:

@article{LorenziCazzolaFacchini2024LowResourceVision,
  title={CLIP on Low-Resource Vision},
  author={Lorenzi, Alessandro and Cazzola, Luca and Facchini, Omar},
  year={2024},
  institution={University of Trento}
}

Authors

  • Alessandro Lorenzi
  • Luca Cazzola
  • Omar Facchini

About

Project for Trends and Applications of Computer Vision for UniTN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •