Skip to content

Commit

Permalink
added adaptive TDVP version
Browse files Browse the repository at this point in the history
  • Loading branch information
PGelss authored Nov 8, 2024
1 parent 361c15c commit 4824c97
Show file tree
Hide file tree
Showing 2 changed files with 183 additions and 35 deletions.
195 changes: 164 additions & 31 deletions scikit_tt/solvers/ode.py
Original file line number Diff line number Diff line change
Expand Up @@ -1073,8 +1073,119 @@ def __splitting_stage(K: Union[np.ndarray, List[np.ndarray]],

return tmp

def tdvp(operator: 'TT', initial_value: 'TT', step_size: float, number_of_steps: int, threshold=1e-12, max_rank=50, normalize: int=0) -> 'TT':
"""
Adaptive time-dependent variational principle (1TDVP+2TDVP), see [1]_.
Parameters
----------
operator : TT
TT operator
initial_guess : TT
initial guess for the solution
def tdvp(operator: 'TT', initial_value: 'TT', step_size: float, number_of_steps: int, normalize: int=0) -> 'TT':
step_size: float
step size
number_of_steps: int
number of time steps
threshold: float
threshold for SVDs
max_rank: int
maximum rank for solution
normalize : {0, 1, 2}, optional
no normalization if 0, otherwise the solution is normalized in terms of Manhattan or Euclidean norm in each step
Returns
-------
TT
approximated solution of the Schrödinger equation
References
----------
..[1] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U. Schollwöck,
C. Hubig, "Time-evolution methods for matrix-product states".
Annals of Physics, 411, 167998, 2019
"""

# define solution list
solution = []
solution.append(initial_value)

# copy previous solution for next step
tmp = solution[0].copy()

# define stacks
stack_left_op = [None] * operator.order
stack_right_op = [None] * operator.order

# construct right stacks for the left- and right-hand side
for i in range(operator.order - 1, -1, -1):
__construct_stack_right_op(i, stack_right_op, operator, tmp)

# define iteration number
current_iteration = 1

# begin TDVP
while current_iteration <= number_of_steps:

i = 0
# first half sweep
while i < operator.order-1:

# update left stacks for the left- and right-hand side
__construct_stack_left_op(i, stack_left_op, operator, tmp)

# construct and solve micro system, decide whether 1TDVP or 2TDVP
if tmp.ranks[i+1]<max_rank and tmp.ranks[i+1]<np.min([tmp.ranks[i]*tmp.row_dims[i], tmp.row_dims[i+1]*tmp.ranks[i+2]]):

micro_op = __construct_micro_matrix_mals(i, stack_left_op, stack_right_op, operator, tmp)
__update_core_tdvp2site(i, micro_op, tmp, step_size, threshold, max_rank, 'forward')

else:

micro_op = __construct_micro_matrix_als(i, stack_left_op, stack_right_op, operator, tmp)
__update_core_tdvp(i, micro_op, tmp, step_size, 'forward')

i += 1

# second half sweep
while i > 0:

# update right stacks for the left- and right-hand side
__construct_stack_right_op(i, stack_right_op, operator, tmp)

# construct and solve micro system, decide whether 1TDVP or 2TDVP
if tmp.ranks[i]<max_rank and tmp.ranks[i]<np.min([tmp.ranks[i-1]*tmp.row_dims[i-1], tmp.row_dims[i]*tmp.ranks[i+1]]):

i += -1
micro_op = __construct_micro_matrix_mals(i, stack_left_op, stack_right_op, operator, tmp)
__update_core_tdvp2site(i, micro_op, tmp, step_size, threshold, max_rank, 'backward')

else:

micro_op = __construct_micro_matrix_als(i, stack_left_op, stack_right_op, operator, tmp)
__update_core_tdvp(i, micro_op, tmp, step_size, 'backward')
i += -1

# increase iteration number
current_iteration += 1

# normalize solution
if normalize > 0:
tmp = (1 / tmp.norm(p=normalize)) * tmp

# append solution
solution.append(tmp.copy())

return solution

def tdvp1site(operator: 'TT', initial_value: 'TT', step_size: float, number_of_steps: int, normalize: int=0) -> 'TT':
"""
Time-dependent variational principle (1TDVP), see [1]_.
Expand Down Expand Up @@ -1184,6 +1295,12 @@ def tdvp2site(operator: 'TT', initial_value: 'TT', step_size: float, number_of_s
number_of_steps: int
number of time steps
threshold: float
threshold for SVDs
max_rank: int
maximum rank for solution
normalize : {0, 1, 2}, optional
no normalization if 0, otherwise the solution is normalized in terms of Manhattan or Euclidean norm in each step
Expand Down Expand Up @@ -1568,23 +1685,36 @@ def tjm(hamiltonian, jump_operator_list, jump_parameter_list, initial_state, tim
L = hamiltonian.order
trajectory = []
state = initial_state.copy()
trajectory.append(state.copy())

# construct dissipative rank-one operators
diss_op_half = tjm_dissipative_operator(L, jump_operator_list, jump_parameter_list, time_step/2)
diss_op_full = tjm_dissipative_operator(L, jump_operator_list, jump_parameter_list, time_step)

# begin of loop
state = diss_op_half@state
state = tjm_jump_process_tdvp(hamiltonian, state, jump_operator_list, jump_parameter_list, time_step)
trajectory.append(state.copy())
for k in range(1, number_of_steps-1):
print(k)

if number_of_steps > 1:

# begin of loop
state = diss_op_half@state
state = tjm_jump_process_tdvp(hamiltonian, state, jump_operator_list, jump_parameter_list, time_step)
state = diss_op_full@state
trajectory.append(state.copy())
for k in range(1, number_of_steps-1):
print(k)
state = tjm_jump_process_tdvp(hamiltonian, state, jump_operator_list, jump_parameter_list, time_step)
state = diss_op_full@state
trajectory.append(state.copy())
state = tjm_jump_process_tdvp(hamiltonian, state, jump_operator_list, jump_parameter_list, time_step)
state = diss_op_half@state
trajectory.append(state.copy())

else:

state = diss_op_half@state
state = tjm_jump_process_tdvp(hamiltonian, state, jump_operator_list, jump_parameter_list, time_step)
state = diss_op_half@state
state = (1/state.norm())*state
trajectory.append(state.copy())
state = diss_op_half@state
state = (1/state.norm())*state
trajectory.append(state.copy())


return trajectory

Expand Down Expand Up @@ -1625,7 +1755,7 @@ def tjm_dissipative_operator(L, jump_operator_list, jump_parameter_list, time_st
for i in range(L):
cores[i] = np.zeros([2,2])
for j in range(len(jump_operator_list[i])):
cores[i] += jump_parameter_list[i][j]*jump_operator_list[i][j].conj().T@jump_operator_list[i][j]
cores[i] += (jump_parameter_list[i][j])**2*jump_operator_list[i][j].conj().T@jump_operator_list[i][j]
cores[i] = lin.expm(-0.5*time_step*cores[i])[None, :, :, None]
op = TT(cores)
return op
Expand Down Expand Up @@ -1679,34 +1809,37 @@ def tjm_jump_process_tdvp(hamiltonian, state, jump_operator_list, jump_parameter
# draw random epsilon
epsilon = np.random.rand()

if dp > epsilon:
# initialize jump probabilites
prob_list = []
for i in range(len(jump_operator_list)):
prob_list += [[None for _ in range(len(jump_operator_list[i]))]]

# index list for application of jump operator
index_list = []

# compute probabilities
for i in range(L):
for j in range(len(prob_list[i])):
index_list += [[i,j]]
prob_list[i][j] = np.tensordot(jump_operator_list[i][j].copy(), state.cores[i].copy(), axes=(1,1))
prob_list[i][j] = time_step*(jump_parameter_list[i][j])**2*np.linalg.norm(prob_list[i][j])**2
if i<len(prob_list)-1:
state = state.ortho_left(start_index=i, end_index=i)

# initialize jump probabilites
prob_list = []
for i in range(len(jump_operator_list)):
prob_list += [[None for _ in range(len(jump_operator_list[i]))]]

# index list for application of jump operator
index_list = []
distribution = np.hstack(prob_list)
dp = np.sum(distribution)

# compute probabilities
for i in range(L):
for j in range(len(prob_list[i])):
index_list += [[i,j]]
prob_list[i][j] = state.cores[i].copy()
prob_list[i][j] = np.tensordot(jump_operator_list[i][j].copy(), prob_list[i][j], axes=(1,1))
prob_list[i][j] = time_step*jump_parameter_list[i][j]*np.linalg.norm(prob_list[i][j])**2
if i<len(prob_list)-1:
state = state.ortho_left(start_index=i, end_index=i)
if dp > epsilon:

# draw index according to computed distribution and apply jump operator
distribution = np.hstack(prob_list)
distribution *= 1/np.sum(distribution)
distribution *= 1/dp
sample = np.random.choice(len(index_list), p=distribution)
index = index_list[sample]
operator = jump_operator_list[index[0]][index[1]]
state_evolved = state_org
state_evolved.cores[index[0]] = np.tensordot(jump_parameter_list[index[0]][index[1]]*jump_operator_list[index[0]][index[1]], state_evolved.cores[index[0]], axes=(1,1))
state_evolved.cores[index[0]] = np.einsum('mj,ijkl->imkl', jump_parameter_list[index[0]][index[1]]*jump_operator_list[index[0]][index[1]], state_evolved.cores[index[0]])
state_evolved = tdvp(hamiltonian, state_evolved, time_step, 1)[-1]

# normalize state
state_evolved = state_evolved.ortho_right()
Expand Down
23 changes: 19 additions & 4 deletions tests/test_ode.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,23 +131,23 @@ def test_kahan_li(self):
# check if matrix- and tensor-based results are sufficiently close
self.assertLess(np.linalg.norm(solution-solution_mat), 1e-12)

def test_tdvp(self):
"""test for higher-order differencing"""
def test_tdvp1site(self):
"""test for 1TDVP"""

# compute numerical solution of the ODE
operator = -1j*mdl.exciton_chain(4, 1e-1, -1e-2)
initial_value = tt.unit(operator.row_dims, [0] * operator.order)
step_size = 0.1
number_of_steps = 500
solution = ode.tdvp(operator, initial_value, step_size, number_of_steps, normalize=0)
solution = ode.tdvp1site(operator, initial_value, step_size, number_of_steps, normalize=0)
solution = np.squeeze(solution[-1].matricize())
solution_mat = splin.expm(step_size*number_of_steps*operator.matricize())@np.squeeze(initial_value.matricize())

# check if matrix- and tensor-based results are sufficiently close
self.assertLess(np.linalg.norm(solution-solution_mat), 1e-12)

def test_tdvp2site(self):
"""test for higher-order differencing"""
"""test for 2TDVP"""

# compute numerical solution of the ODE
operator = -1j*mdl.exciton_chain(4, 1e-1, -1e-2)
Expand All @@ -160,6 +160,21 @@ def test_tdvp2site(self):

# check if matrix- and tensor-based results are sufficiently close
self.assertLess(np.linalg.norm(solution-solution_mat), 1e-12)

def test_tdvp(self):
"""test for adaptive TDVP"""

# compute numerical solution of the ODE
operator = -1j*mdl.exciton_chain(4, 1e-1, -1e-2)
initial_value = tt.unit(operator.row_dims, [0] * operator.order)
step_size = 0.1
number_of_steps = 500
solution = ode.tdvp(operator, initial_value, step_size, number_of_steps, threshold=1e-12, max_rank=10, normalize=0)
solution = np.squeeze(solution[-1].matricize())
solution_mat = splin.expm(step_size*number_of_steps*operator.matricize())@np.squeeze(initial_value.matricize())

# check if matrix- and tensor-based results are sufficiently close
self.assertLess(np.linalg.norm(solution-solution_mat), 1e-12)

def test_explicit_euler(self):
"""test for explicit Euler method"""
Expand Down

0 comments on commit 4824c97

Please sign in to comment.