Skip to content

Pavi114/motion-completion-using-transformers

Repository files navigation

Transformer based Motion In-betweening

In-Betweening is the process of drawing transition frames between temporally-sparse keyframes to create a smooth animation sequence. This work presents a novel transformer based in betweening technique that serves as a tool for 3D animators.

Visualizer

viz_final.mp4

Motion Generator

gen_final.mp4

Architecture

Downloading Data

LAFAN1 Dataset

Installation

  1. Install Pre-Requisites

    • Python 3.9
    • PyTorch 1.10
  2. Clone the repository git clone https://github.com/Pavi114/motion-completion-using-transformers

  3. Copy config/default.yml to config/model_name.yml and edit as needed.

  4. Install Python Dependencies

    • Create a virtualenv: python3 -m virtualenv -p python3.9 venv

    • Install Dependencies: pip install -r requirements.txt

Execution

First activate the venv: source venv/bin/activate

Training

train.py [-h] [--model_name MODEL_NAME] [--save_weights | --no-save_weights] [--load_weights | --no-load_weights]

optional arguments:
  -h, --help            show the help message and exit
  --model_name MODEL_NAME
                        Name of the model. Used for loading and saving weights.
  --save_weights, --no-save_weights
                        Save model weights. (default: False)
  --load_weights, --no-load_weights
                        Load model weights. (default: False)

Visualization

visualize.py [-h] [--model_name MODEL_NAME]

optional arguments:
  -h, --help            show the help message and exit
  --model_name MODEL_NAME
                        Name of the model. Used for loading and saving weights.

Evaluation

evaluate.py [-h] [--model_name MODEL_NAME]

optional arguments:
  -h, --help            show the help message and exit
  --model_name MODEL_NAME
                        Name of the model. Used for loading and saving weights.

Running Visualizer

  1. Navigate to ./viz directory

    cd ./viz
    
  2. Install NPM Modules

    npm install
    
  3. Build visualizer

    npm run build
    
  4. Copy output file to ./dist

    cp output/[MODEL_NAME] viz/dist/static/animations/[MODEL_NAME]
    
  5. Run viz

    npm start
    

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published