-
Notifications
You must be signed in to change notification settings - Fork 39
Random Time Series Generators API
The module csp.random
contains a few nodes (contributions welcome) to help simulate stochastic processes to assist with testing, examples and demos.
These nodes extend the deterministic csp.timer
node with other arrival processes for triggering events.
csp.random.poisson_timer(
rate: ts[float],
seed: object,
value: "~T" = True
) -> ts["T"]
Generate events according to a Poisson process with time-varying rate. For a fixed-interval timer see csp.timer
.
Args:
-
rate
: The rate of the Poisson process (per second), must be non-negative -
seed
: The seed for the numpy random Generator. Can be anything accepted bynp.random.default_rng
-
value
: The value to tick when there are events (similar tocsp.timer
)
To generate random noise at trigger times, the csp.apply
node can be used. For example, to generate random samples at the tick times of a trigger
edge following a Laplace distribution:
import csp
import numpy as np
from csp.typing import Numpy1DArray
rng = np.random.default_rng()
random_noise_1d = csp.apply(
trigger,
lambda _: rng.laplace(0, 1),
result_type=float
)
random_noise = csp.apply(
trigger,
lambda _: rng.laplace(0, 1, size=10),
result_type=Numpy1DArray[float]
)
See the Numpy Random Generator documentation for a full list of distributions.
These nodes simulate samples from diffusion processes at a provided set of trigger events.
csp.random.brownian_motion(
trigger: ts[object],
drift: ts[Numpy1DArray[float]],
covariance: ts[NumpyNDArray[float]],
seed: object,
return_increments: bool = False
) -> ts[Numpy1DArray[float]]:
Generate multi-dimensional Brownian motion (or increments) at the trigger times, with time-varying drift and covariance.
The Brownian motion starts once drift and covariance have at least 1 tick each, and will start from zero.
To use a different start value, use csp.const(initial_value) + brownian_motion(...)
Args:
-
trigger
: When to return the value of the process -
drift
: Drift parameter (per second), i.e. array of length n -
covariance
: Covariance matrix (per second), i.e. array of size nxn -
seed
: The seed for the numpy random Generator. Can be anything accepted bynp.random.default_rng
-
return_increments
: Whether to return increments of the brownian motion at trigger times instead of the process itself
csp.random.brownian_motion_1d(
trigger: ts[object],
drift: ts[float],
covariance: ts[float],
seed: object,
return_increments: bool = False
) -> ts[float]:
Generate one-dimensional Brownian motion at the trigger times, with time-varying drift and variance.
The Brownian motion starts once drift and variance have at least 1 tick each, and will start from zero.
To use a different start value, use csp.const(initial_value) + brownian_motion_1d(...)
-
trigger
: When to return the value of the process -
drift
: Drift parameter (per second) -
covariance
: Variance parameter (per second) -
seed
: The seed for the numpy random Generator. Can be anything accepted bynp.random.default_rng
-
return_increments
: Whether to return increments of the brownian motion at trigger times instead of the process itself
This wiki is autogenerated. To made updates, open a PR against the original source file in docs/wiki
.
Get Started (Tutorials)
Concepts
- CSP Node
- CSP Graph
- Historical Buffers
- Execution Modes
- Adapters
- Feedback and Delayed Edge
- Common Mistakes
How-to guides
- Use Statistical Nodes
- Create Dynamic Baskets
- Write Adapters:
- Profile CSP Code
References
- API Reference
- Glossary of Terms
- Examples
Developer Guide