Skip to content

ProgramFiles/Cluster-Analysis

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tired of Topic Models? Clusters of Pretrained Word Embeddings Make for Fast and Good Topics too!

The repo contains the source code for the paper: link here

How to use the code

To cluster the word embeddings to discover the latent topics, run the code/score.py file. Here are the arguments that can be passed in:

Required:

--entities : The type of pre-trained word embedding you are clustering with
choices= word2vec, fasttext, glove, KG KG stands for your own set of embeddings

--entities_file: The file name contain the embeddings

--clustering_algo: The clustering algorithm to use
choices= KMeans, SPKMeans, GMM, KMedoids, Agglo, DBSCAN , Spectral, VMFM

--vocab: List of vocab files to use for tokenization

Not Required:

--dataset: Dataset to test clusters against against
default = 20NG choices= 20NG, reuters

--preprocess: Cuttoff threshold for words to keep in the vocab based on frequency

--use_dims: Dimensions to scale with PCA (much be less than orginal dims)

--num_topics: List of number of topics to try default: 20

--doc_info: How to add document information choices= DUP, WGT

--rerank: Value used for reranking the words in a cluster
choices=tf, tfidf, tfdf

Example call: python3 code/score.py --entities KG --entities_file {dest_to_entities_file} --clustering_algo GMM --dataset reuters --vocab {dest_to_vocab_file} --num_topics 20 50 --doc_info WGT--rerank tf

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 90.7%
  • Shell 9.3%