Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

auto updates #7105

Merged
merged 1 commit into from
Oct 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion monai/apps/auto3dseg/bundle_gen.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,6 @@
logger = get_logger(module_name=__name__)
ALGO_HASH = MONAIEnvVars.algo_hash()


__all__ = ["BundleAlgo", "BundleGen"]


Expand Down
10 changes: 5 additions & 5 deletions monai/apps/detection/networks/retinanet_network.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,8 +88,8 @@ def __init__(

for layer in self.conv.children():
if isinstance(layer, conv_type): # type: ignore
torch.nn.init.normal_(layer.weight, std=0.01) # type: ignore
torch.nn.init.constant_(layer.bias, 0) # type: ignore
torch.nn.init.normal_(layer.weight, std=0.01)
torch.nn.init.constant_(layer.bias, 0)

self.cls_logits = conv_type(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1)
torch.nn.init.normal_(self.cls_logits.weight, std=0.01)
Expand Down Expand Up @@ -167,8 +167,8 @@ def __init__(self, in_channels: int, num_anchors: int, spatial_dims: int):

for layer in self.conv.children():
if isinstance(layer, conv_type): # type: ignore
torch.nn.init.normal_(layer.weight, std=0.01) # type: ignore
torch.nn.init.zeros_(layer.bias) # type: ignore
torch.nn.init.normal_(layer.weight, std=0.01)
torch.nn.init.zeros_(layer.bias)

def forward(self, x: list[Tensor]) -> list[Tensor]:
"""
Expand Down Expand Up @@ -297,7 +297,7 @@ def __init__(
)
self.feature_extractor = feature_extractor

self.feature_map_channels: int = self.feature_extractor.out_channels # type: ignore[assignment]
self.feature_map_channels: int = self.feature_extractor.out_channels
self.num_anchors = num_anchors
self.classification_head = RetinaNetClassificationHead(
self.feature_map_channels, self.num_anchors, self.num_classes, spatial_dims=self.spatial_dims
Expand Down
2 changes: 1 addition & 1 deletion monai/apps/reconstruction/networks/blocks/varnetblock.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def soft_dc(self, x: Tensor, ref_kspace: Tensor, mask: Tensor) -> Tensor:
Returns:
Output of DC block with the same shape as x
"""
return torch.where(mask, x - ref_kspace, self.zeros) * self.dc_weight # type: ignore
return torch.where(mask, x - ref_kspace, self.zeros) * self.dc_weight

def forward(self, current_kspace: Tensor, ref_kspace: Tensor, mask: Tensor, sens_maps: Tensor) -> Tensor:
"""
Expand Down
8 changes: 4 additions & 4 deletions monai/losses/cldice.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,12 +29,12 @@ def soft_erode(img: torch.Tensor) -> torch.Tensor: # type: ignore
if len(img.shape) == 4:
p1 = -(F.max_pool2d(-img, (3, 1), (1, 1), (1, 0)))
p2 = -(F.max_pool2d(-img, (1, 3), (1, 1), (0, 1)))
return torch.min(p1, p2) # type: ignore
return torch.min(p1, p2)
elif len(img.shape) == 5:
p1 = -(F.max_pool3d(-img, (3, 1, 1), (1, 1, 1), (1, 0, 0)))
p2 = -(F.max_pool3d(-img, (1, 3, 1), (1, 1, 1), (0, 1, 0)))
p3 = -(F.max_pool3d(-img, (1, 1, 3), (1, 1, 1), (0, 0, 1)))
return torch.min(torch.min(p1, p2), p3) # type: ignore
return torch.min(torch.min(p1, p2), p3)


def soft_dilate(img: torch.Tensor) -> torch.Tensor: # type: ignore
Expand All @@ -48,9 +48,9 @@ def soft_dilate(img: torch.Tensor) -> torch.Tensor: # type: ignore
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/soft_skeleton.py#L18
"""
if len(img.shape) == 4:
return F.max_pool2d(img, (3, 3), (1, 1), (1, 1)) # type: ignore
return F.max_pool2d(img, (3, 3), (1, 1), (1, 1))
elif len(img.shape) == 5:
return F.max_pool3d(img, (3, 3, 3), (1, 1, 1), (1, 1, 1)) # type: ignore
return F.max_pool3d(img, (3, 3, 3), (1, 1, 1), (1, 1, 1))


def soft_open(img: torch.Tensor) -> torch.Tensor:
Expand Down
4 changes: 2 additions & 2 deletions monai/networks/blocks/feature_pyramid_network.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,8 +194,8 @@ def __init__(
conv_type_: type[nn.Module] = Conv[Conv.CONV, spatial_dims]
for m in self.modules():
if isinstance(m, conv_type_):
nn.init.kaiming_uniform_(m.weight, a=1) # type: ignore
nn.init.constant_(m.bias, 0.0) # type: ignore
nn.init.kaiming_uniform_(m.weight, a=1)
nn.init.constant_(m.bias, 0.0)

if extra_blocks is not None:
if not isinstance(extra_blocks, ExtraFPNBlock):
Expand Down
4 changes: 2 additions & 2 deletions monai/networks/nets/swin_unetr.py
Original file line number Diff line number Diff line change
Expand Up @@ -519,7 +519,7 @@ def forward(self, x, mask):
q = q * self.scale
attn = q @ k.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.clone()[:n, :n].reshape(-1) # type: ignore
self.relative_position_index.clone()[:n, :n].reshape(-1)
].reshape(n, n, -1)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attn = attn + relative_position_bias.unsqueeze(0)
Expand Down Expand Up @@ -678,7 +678,7 @@ def load_from(self, weights, n_block, layer):
self.norm1.weight.copy_(weights["state_dict"][root + block_names[0]])
self.norm1.bias.copy_(weights["state_dict"][root + block_names[1]])
self.attn.relative_position_bias_table.copy_(weights["state_dict"][root + block_names[2]])
self.attn.relative_position_index.copy_(weights["state_dict"][root + block_names[3]]) # type: ignore
self.attn.relative_position_index.copy_(weights["state_dict"][root + block_names[3]])
self.attn.qkv.weight.copy_(weights["state_dict"][root + block_names[4]])
self.attn.qkv.bias.copy_(weights["state_dict"][root + block_names[5]])
self.attn.proj.weight.copy_(weights["state_dict"][root + block_names[6]])
Expand Down
2 changes: 1 addition & 1 deletion monai/networks/nets/transchex.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ def __init__(self, *inputs, **kwargs) -> None:

def init_bert_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) # type: ignore
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, torch.nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
Expand Down