-
-
Notifications
You must be signed in to change notification settings - Fork 136
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
torch.compile: fix functionalization (#1045)
- Loading branch information
Showing
3 changed files
with
162 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
import operator | ||
|
||
import torch | ||
import torch.fx as fx | ||
|
||
|
||
def fix_functionalization(graph: fx.Graph): | ||
""" | ||
Rewrite the graph module to replace the pattern involving | ||
torch._higher_order_ops.auto_functionalize.auto_functionalized | ||
with a direct call to the inplace custom op. | ||
# TODO: check if PyTorch nightly has fixed this issue | ||
""" | ||
# debug code, if we want to see the graph before the transformation | ||
# with open("before.py", "w") as f: | ||
# print(graph.python_code(root_module="self", verbose=True).src, file=f) | ||
nodes_to_remove = [] | ||
for node in graph.nodes: | ||
# Identify the auto_functionalized node | ||
if ( | ||
node.op == "call_function" | ||
and node.target | ||
== torch._higher_order_ops.auto_functionalize.auto_functionalized | ||
): # noqa | ||
if node.args[0] == torch.ops._C.rotary_embedding.default: | ||
# manual replace for rotary_embedding | ||
# Now, collect the arguments | ||
kwargs = node.kwargs | ||
query = kwargs["query"] | ||
mm_node = query.args[0].args[0] | ||
# Create a new call to torch.ops._C.rotary_embedding.default | ||
with graph.inserting_before(node): | ||
# just insert the call to the custom op | ||
# NOTE: don't run dead code elimination, | ||
# otherwise this op will be removed | ||
graph.call_function( | ||
torch.ops._C.rotary_embedding.default, kwargs=kwargs | ||
) | ||
# Remove the auto_functionalized node | ||
# Since the node may have outputs, we need to handle its users | ||
# Replace uses of the outputs (getitem nodes) with mm_node | ||
for user in list(node.users): | ||
if ( | ||
user.op == "call_function" | ||
and user.target == operator.getitem | ||
): # noqa | ||
# Remove the getitem node | ||
for getitem_user in list(user.users): | ||
if ( | ||
getitem_user.op == "call_function" | ||
and getitem_user.target | ||
== torch.ops.aten.slice_scatter.default | ||
): | ||
# Replace the uses of slice_scatter node | ||
# with mm_node | ||
getitem_user.replace_all_uses_with(mm_node) | ||
nodes_to_remove.append(getitem_user) | ||
nodes_to_remove.append(user) | ||
nodes_to_remove.append(node) | ||
elif node.args[0] == torch.ops._C.fused_add_rms_norm.default: | ||
# manual replace for fused_add_rms_norm | ||
# this is the most effective optimization for llama | ||
# failing to do this will result in many unnecessary copies | ||
kwargs = node.kwargs | ||
input = kwargs["input"] | ||
residual = kwargs["residual"] | ||
# Create a new call to torch.ops._C.rotary_embedding.default | ||
with graph.inserting_before(node): | ||
# just insert the call to the custom op | ||
# NOTE: don't run dead code elimination, | ||
# otherwise this op will be removed | ||
graph.call_function( | ||
torch.ops._C.fused_add_rms_norm.default, kwargs=kwargs | ||
) | ||
for user in list(node.users): | ||
if ( | ||
user.op == "call_function" | ||
and user.target == operator.getitem | ||
): # noqa | ||
# Remove the getitem node | ||
if user.args[1] == 1: | ||
replace_node = input | ||
elif user.args[1] == 2: | ||
replace_node = residual | ||
user.replace_all_uses_with(replace_node) | ||
nodes_to_remove.append(user) | ||
nodes_to_remove.append(node) | ||
elif node.args[0] == torch.ops._C.rms_norm.default: | ||
# manual replace for rms_norm | ||
kwargs = node.kwargs | ||
input = kwargs["input"] | ||
out = kwargs["out"] | ||
weight = kwargs["weight"] | ||
epsilon = kwargs["epsilon"] | ||
# Create a new call to torch.ops._C.rotary_embedding.default | ||
# cannot use kwargs, because we have an `out`, see https://github.com/pytorch/pytorch/blob/a00faf440888ffb724bad413f329a49e2b6388e7/torch/_inductor/lowering.py#L351 # noqa | ||
with graph.inserting_before(node): | ||
# just insert the call to the custom op | ||
# NOTE: don't run dead code elimination, | ||
# otherwise this op will be removed | ||
graph.call_function( | ||
torch.ops._C.rms_norm.default, | ||
args=(out, input, weight, epsilon), | ||
) | ||
replace_node = out | ||
for user in list(node.users): | ||
if ( | ||
user.op == "call_function" | ||
and user.target == operator.getitem | ||
): # noqa | ||
user.replace_all_uses_with(replace_node) | ||
nodes_to_remove.append(user) | ||
nodes_to_remove.append(node) | ||
elif node.args[0] == torch.ops._C.silu_and_mul.default: | ||
# manual replace for silu_and_mul | ||
kwargs = node.kwargs | ||
input = kwargs["input"] | ||
out = kwargs["out"] | ||
# Create a new call to torch.ops._C.rotary_embedding.default | ||
# cannot use kwargs, because we have an `out`, see https://github.com/pytorch/pytorch/blob/a00faf440888ffb724bad413f329a49e2b6388e7/torch/_inductor/lowering.py#L351 # noqa | ||
with graph.inserting_before(node): | ||
# just insert the call to the custom op | ||
# NOTE: don't run dead code elimination, | ||
# otherwise this op will be removed | ||
graph.call_function( | ||
torch.ops._C.silu_and_mul.default, | ||
args=(out, input), | ||
) | ||
replace_node = out | ||
for user in list(node.users): | ||
if ( | ||
user.op == "call_function" | ||
and user.target == operator.getitem | ||
): # noqa | ||
user.replace_all_uses_with(replace_node) | ||
nodes_to_remove.append(user) | ||
nodes_to_remove.append(node) | ||
# Remove the nodes all at once | ||
for node in nodes_to_remove: | ||
graph.erase_node(node) | ||
# debug code, if we want to see the graph after the transformation | ||
# with open("after.py", "w") as f: | ||
# print(graph.python_code(root_module="self", verbose=True).src, file=f) | ||
|
||
|
||
def aphrodite_backend(graph, example_inputs): | ||
from torch._inductor import config | ||
|
||
current_config = config.shallow_copy_dict() | ||
from torch._inductor.compile_fx import compile_fx | ||
|
||
current_config["post_grad_custom_post_pass"] = fix_functionalization | ||
return compile_fx(graph, example_inputs, config_patches=current_config) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters