Skip to content

micapipe from the Multimodal imaging and connectome analysis lab (http://mica-mni.github.io) at the Montreal Neurological Institute. Read The Docs documentation below

License

Notifications You must be signed in to change notification settings

QionglingLi/micapipe

 
 

Repository files navigation

micapipe logo

Multimodal connectome processing with the micapipe

License: GPL v3 Documentation Status CircleCI Codacy Badge GitHub stars GitHub issues version Docker Pulls Docker Image Version (latest semver)

micapipe is developed by MICA-lab at McGill University for use at the Neuro, McConnell Brain Imaging Center (BIC).

The main goal of this pipeline is to provide a semi-flexible and robust framework to process MRI images and generate ready to use modality based connectomes.
The micapipe utilizes a set of known software dependencies, different brain atlases, and software developed in our laboratory. The basic cutting edge processing of our pipelines aims the T1 weighted images, resting state fMRI and Diffusion weighted images.

Documentation

You can find the documentation in micapipe.readthedocs.io

Container

You can find the latest version of the container in Docker

Advantages

  • Microstructure Profile Covariance (Paquola C et al. Plos Biology 2019).
  • Multiple parcellations (18 x 3).
  • Includes cerebellum and subcortical areas.
  • Surface based analysis.
  • Latest version of software dependencies.
  • Ready to use outputs.
  • Easy to use.
  • Standardized format (BIDS).

How to cite micapipe

Raúl R. Cruces, Jessica Royer, Peer Herholz, Sara Larivière, Reinder Vos de Wael, Casey Paquola, Oualid Benkarim, Bo-yong Park, Janie Degré-Pelletier, Mark Nelson, Jordan DeKraker, Christine Tardif, Jean-Baptiste Poline, Luis Concha, Boris C. Bernhardt. (2022). Micapipe: A Pipeline for Multimodal Neuroimaging and Connectome Analysis. bioRxiv 2022.01.31.478189. doi: https://doi.org/10.1101/2022.01.31.478189

Dependencies

Software Version Further info
dcm2niix v1.0.20190902 https://github.com/rordenlab/dcm2niix
Freesurfer 6.0.0 https://surfer.nmr.mgh.harvard.edu/
FSl 6.0 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
AFNI 20.3.03 https://afni.nimh.nih.gov/download
MRtrix3 3.0.1 https://www.mrtrix.org
ANTs 2.3.4 https://github.com/ANTsX/ANTs
workbench 1.4.2 https://www.humanconnectome.org/software/connectome-workbench
FIX 1.06 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX
R 3.6.3 https://www.r-project.org
python 3.7.6 https://www.python.org/downloads/

The FIX package (FMRIB's ICA-based Xnoiseifier) requires FSL, R and one of MATLAB Runtime Component, full MATLAB or Octave. We recommend the use of the MATLAB Runtime Component. Additionally, it requires the following R libraries: 'kernlab','ROCR','class','party','e1071','randomForest'

python packages

Package Version
brainspace 0.1.1
certifi 2020.6.20
cycler 0.10.0
argparse 0.1.1
joblib 0.16.0
kiwisolver 1.2.0
matplotlib 3.3.1
nibabel 3.1.1
nilearn 0.6.2
numpy 1.19.1
packaging 20.4
pandas 1.1.1
Pillow 7.2.0
pyparsing 2.4.7
python-dateutil 2.8.1
pytz 2020.1
scikit-learn 0.23.2
scipy 1.5.2
six 1.15.0
threadpoolctl 2.1.0
vtk 9.0.1

R libraries

Core library version Dependency library version Dependency library version
plotly 4.9.2.1 tidyselect 1.1.0 parallel 3.6.3
viridis 0.5.1 coin 1.3-1 TH.data 1.0-10
viridisLite 0.3.0 purrr 0.3.4 Rcpp 1.0.5
tidyr 1.1.2 splines 3.6.3 jsonlite 1.6.1
ggplot2 3.3.2 lattice 0.20-41 gridExtra 2.3
scales 1.1.1 colorspace 1.4-1 digest 0.6.27
randomForest 4.6-14 vctrs 0.3.5 dplyr 1.0.2
e1071 1.7-4 generics 0.0.2 tools 3.6.3
party 1.3-5 htmltools 0.4.0 magrittr 2.0.1
strucchange 1.5-2 survival 3.1-12 lazyeval 0.2.2
sandwich 2.5-1 rlang 0.4.9 tibble 3.0.4
zoo 1.8-7 pillar 1.4.3 crayon 1.3.4
modeltools 0.2-23 glue 1.4.2 pkgconfig 2.0.3
mvtnorm 1.1-1 withr 2.3.0 MASS 7.3-51.5
class 7.3-17 matrixStats 0.56.0 ellipsis 0.3.0
ROCR 1.0-11 multcomp 1.4-13 libcoin 1.0-6
kernlab 0.9-29 lifecycle 0.2.0 Matrix 1.2-18
networkD3 0.4 munsell 0.5.0 data.table 1.12.8
gtable 0.3.0 httr 1.4.1
htmlwidgets 1.5.1 R6 2.4.1
codetools 0.2-16 compiler 3.6.3

About

micapipe from the Multimodal imaging and connectome analysis lab (http://mica-mni.github.io) at the Montreal Neurological Institute. Read The Docs documentation below

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Shell 74.6%
  • Python 18.1%
  • R 4.7%
  • Dockerfile 2.6%