Skip to content

Commit

Permalink
Add more examples
Browse files Browse the repository at this point in the history
  • Loading branch information
NikitaKishore committed Mar 8, 2019
1 parent 973413d commit e2d970f
Show file tree
Hide file tree
Showing 4 changed files with 143 additions and 9 deletions.
2 changes: 1 addition & 1 deletion src/arma.jl
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,7 @@ response1 = impulse_response(lp1)
plot(1:length(response1),response1,color=:blue, lw=2, marker=:circle, markersize=3)
lp2 = ARMA([0.8, 0.5], [0.7, 0.3], 0.5)
response2 = impulse_response(lp2)
response2 = impulse_response(lp2,impulse_length = 50)
plot(1:length(response2),response2,color=:blue, lw=2, marker=:circle, markersize=3)
```
Expand Down
78 changes: 78 additions & 0 deletions src/markov/mc_tools.jl
Original file line number Diff line number Diff line change
Expand Up @@ -200,6 +200,20 @@ Indicate whether the Markov chain `mc` is irreducible.
- `::Bool`
##### Examples
```jlcon
julia> P1 = [0 0.5 0.5; 0.3 0 0.7; 0 0 1]
julia> is_irreducible(MarkovChain(P1))
false
julia> P2 = [0 1 0; 0 0 1; 1 0 0]
julia> is_irreducible(MarkovChain(P2))
true
```
"""
is_irreducible(mc::MarkovChain) = is_strongly_connected(DiGraph(mc.p))

Expand All @@ -214,6 +228,20 @@ Indicate whether the Markov chain `mc` is aperiodic.
- `::Bool`
##### Examples
```jlcon
julia> P1 = [1 0; 0 1]
julia> is_aperiodic(MarkovChain(P1))
true
julia> P1 = [0 1 0 0; 1 0 0 0; 0 0 0 1; 0 0 1 0]
julia> is_aperiodic(MarkovChain(P1))
false
```
"""
is_aperiodic(mc::MarkovChain) = period(mc) == 1

Expand Down Expand Up @@ -373,6 +401,23 @@ The resulting vector has the state values of `mc` as elements.
- `X::Vector` : Vector containing the sample path, with length
ts_length
### Examples
```jlcon
julia> P = [0.3 0.7; 0.75 0.25];
julia> mc = MarkovChain(P,["Umemployed", "Employed"]);
julia> simulate(mc,5,init=2)
5-element Array{String,1}:
"Employed"
"Umemployed"
"Employed"
"Umemployed"
"Employed"
```
"""
function simulate(mc::MarkovChain, ts_length::Int;
init::Int=rand(1:n_states(mc)))
Expand All @@ -397,6 +442,26 @@ same as the type of the state values of `mc`
- vector: cycle through the elements, applying each as an
initial condition until all columns have an initial condition
(allows for more columns than initial conditions)
### Examples
```jlcon
julia> using Plots
julia> P = [0 0.5 0.5; 0.5 0 0.5; 0.5 0.5 0];
julia> mc = MarkovChain(P);
julia> X = zeros(15,4);
julia> simulate!(X,mc,init = 1);
julia> series = plot(1:15, X[:,1], lw=2, ylim = (0,4), label = "Sample path 1", size=(800,550))
julia> for i in 2:4
plot!(1:15,X[:,i], lw=2, label = "Sample path $i")
end
```
"""
function simulate!(X::Union{AbstractVector,AbstractMatrix},
mc::MarkovChain; init=rand(1:n_states(mc), size(X, 2)))
Expand Down Expand Up @@ -427,6 +492,19 @@ The resulting vector has the indices of the state values of `mc` as elements.
- `X::Vector{Int}` : Vector containing the sample path, with length
ts_length
### Examples
```jlcon
julia> P = [0.3 0.7; 0.75 0.25];
julia> mc = MarkovChain(P,["Umemployed", "Employed"]);
julia> X = simulate_indices(mc,10,init=1);
julia> plot(1:10,X,lw=2,label="Sample Path",ylim=[1,2])
```
"""
function simulate_indices(mc::MarkovChain, ts_length::Int;
init::Int=rand(1:n_states(mc)))
Expand Down
23 changes: 17 additions & 6 deletions src/modeltools/utility.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,12 +17,23 @@ u(c) = log(1e-10) + 1e10*(c - 1e-10)
##### Examples
```julia
u1 = LogUtility()
u1(10.)
u1.([1.e-15, 1.e15])
u2 = LogUtility(10)
u2.([10., 1.e-15])
```jlcon
julia> u1 = LogUtility()
julia> u1(10.)
2.302585092994046
julia> u1.([1.e-15, 1.e15])
2-element Array{Float64,1}:
-24.025840929940458
34.538776394910684
julia> u2 = LogUtility(10)
julia> u2.([10., 1.e-15])
2-element Array{Float64,1}:
23.02585092994046
-240.25840929940458
```
"""
Expand Down
49 changes: 47 additions & 2 deletions src/util.jl
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,33 @@ ckron(arrays::AbstractArray...) = reduce(kron, arrays)
Repeatedly apply kronecker products to the arrays. Equilvalent to
`reduce(kron, arrays)`
##### Example
```jlcon
julia> A = [10 16 11; 5 3 7]
julia> B = B = [0.25 0.5; 0.15 0.4]
julia> C = [120 100; 375 240; 540 650]
julia> ckron(A,B,C)
12×12 Array{Float64,2}:
300.0 250.0 600.0 500.0 480.0 … 330.0 275.0 660.0 550.0
937.5 600.0 1875.0 1200.0 1500.0 1031.25 660.0 2062.5 1320.0
1350.0 1625.0 2700.0 3250.0 2160.0 1485.0 1787.5 2970.0 3575.0
180.0 150.0 480.0 400.0 288.0 198.0 165.0 528.0 440.0
562.5 360.0 1500.0 960.0 900.0 618.75 396.0 1650.0 1056.0
810.0 975.0 2160.0 2600.0 1296.0 … 891.0 1072.5 2376.0 2860.0
150.0 125.0 300.0 250.0 90.0 210.0 175.0 420.0 350.0
468.75 300.0 937.5 600.0 281.25 656.25 420.0 1312.5 840.0
675.0 812.5 1350.0 1625.0 405.0 945.0 1137.5 1890.0 2275.0
90.0 75.0 240.0 200.0 54.0 126.0 105.0 336.0 280.0
281.25 180.0 750.0 480.0 168.75 … 393.75 252.0 1050.0 672.0
405.0 487.5 1080.0 1300.0 243.0 567.0 682.5 1512.0 1820.0
```
"""
ckron

Expand Down Expand Up @@ -191,12 +218,13 @@ along each dimension can be obtained by `simplex_grid(m, n) / n`.
##### Examples
>>> simplex_grid(3, 4)
```jlcon
julia> simplex_grid(3,4)
3×15 Array{Int64,2}:
0 0 0 0 0 1 1 1 1 2 2 2 3 3 4
0 1 2 3 4 0 1 2 3 0 1 2 0 1 0
4 3 2 1 0 3 2 1 0 2 1 0 1 0 0
```
##### References
Expand Down Expand Up @@ -354,6 +382,23 @@ array fits within the range of `T`; a sufficient condition for it is
# Returns
- `idx::T`: Ranking of `a`.
##### Examples
```jlcon
julia> k_array_rank([2,3,5,8])
42
julia> typeof(k_array_rank([2,3,5,8]))
Int64
julia> typeof(k_array_rank(Int128,[2,3,5,8]))
Int128
julia> typeof(k_array_rank(BigInt,[2,3,5,8]))
BigInt
```
"""
function k_array_rank(T::Type{<:Integer}, a::Vector{<:Integer})
if T != BigInt
Expand Down

0 comments on commit e2d970f

Please sign in to comment.