Skip to content

Commit

Permalink
[prob_dist] Update suggestions (#519)
Browse files Browse the repository at this point in the history
* update prob_dist

* add x y label

* Update lectures/prob_dist.md

Co-authored-by: Matt McKay <[email protected]>

* update xy label using lower case

* Update lectures/prob_dist.md

---------

Co-authored-by: Matt McKay <[email protected]>
  • Loading branch information
longye-tian and mmcky authored Jul 23, 2024
1 parent 7fa9a60 commit e809a43
Showing 1 changed file with 50 additions and 12 deletions.
62 changes: 50 additions & 12 deletions lectures/prob_dist.md
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,8 @@ S = np.arange(1, n+1)
ax.plot(S, u.pmf(S), linestyle='', marker='o', alpha=0.8, ms=4)
ax.vlines(S, 0, u.pmf(S), lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('PMF')
plt.show()
```

Expand All @@ -136,6 +138,8 @@ S = np.arange(1, n+1)
ax.step(S, u.cdf(S))
ax.vlines(S, 0, u.cdf(S), lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('CDF')
plt.show()
```

Expand Down Expand Up @@ -232,6 +236,8 @@ S = np.arange(1, n+1)
ax.plot(S, u.pmf(S), linestyle='', marker='o', alpha=0.8, ms=4)
ax.vlines(S, 0, u.pmf(S), lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('PMF')
plt.show()
```

Expand All @@ -244,6 +250,8 @@ S = np.arange(1, n+1)
ax.step(S, u.cdf(S))
ax.vlines(S, 0, u.cdf(S), lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('CDF')
plt.show()
```

Expand All @@ -267,6 +275,8 @@ u_sum = np.cumsum(u.pmf(S))
ax.step(S, u_sum)
ax.vlines(S, 0, u_sum, lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('CDF')
plt.show()
```

Expand All @@ -289,21 +299,13 @@ The mean and variance are:
```{code-cell} ipython3
λ = 2
u = scipy.stats.poisson(λ)
```

```{code-cell} ipython3
u.mean(), u.var()
```

The the expectation of Poisson distribution is $\lambda$ and the variance is also $\lambda$.
The expectation of the Poisson distribution is $\lambda$ and the variance is also $\lambda$.

Here's the PMF:

```{code-cell} ipython3
λ = 2
u = scipy.stats.poisson(λ)
```

```{code-cell} ipython3
u.pmf(1)
```
Expand All @@ -314,6 +316,8 @@ S = np.arange(1, n+1)
ax.plot(S, u.pmf(S), linestyle='', marker='o', alpha=0.8, ms=4)
ax.vlines(S, 0, u.pmf(S), lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('PMF')
plt.show()
```

Expand Down Expand Up @@ -386,7 +390,8 @@ for μ, σ in zip(μ_vals, σ_vals):
ax.plot(x_grid, u.pdf(x_grid),
alpha=0.5, lw=2,
label=f'$\mu={μ}, \sigma={σ}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
plt.show()
```
Expand All @@ -402,6 +407,8 @@ for μ, σ in zip(μ_vals, σ_vals):
alpha=0.5, lw=2,
label=f'$\mu={μ}, \sigma={σ}$')
ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
plt.legend()
plt.show()
```
Expand Down Expand Up @@ -446,7 +453,8 @@ for μ, σ in zip(μ_vals, σ_vals):
ax.plot(x_grid, u.pdf(x_grid),
alpha=0.5, lw=2,
label=f'$\mu={μ}, \sigma={σ}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
plt.show()
```
Expand All @@ -461,6 +469,8 @@ for σ in σ_vals:
label=f'$\mu={μ}, \sigma={σ}$')
ax.set_ylim(0, 1)
ax.set_xlim(0, 3)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
plt.legend()
plt.show()
```
Expand Down Expand Up @@ -500,6 +510,8 @@ for λ in λ_vals:
ax.plot(x_grid, u.pdf(x_grid),
alpha=0.5, lw=2,
label=f'$\lambda={λ}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
plt.show()
```
Expand All @@ -512,6 +524,8 @@ for λ in λ_vals:
alpha=0.5, lw=2,
label=f'$\lambda={λ}$')
ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
plt.legend()
plt.show()
```
Expand Down Expand Up @@ -557,6 +571,8 @@ for α, β in zip(α_vals, β_vals):
ax.plot(x_grid, u.pdf(x_grid),
alpha=0.5, lw=2,
label=fr'$\alpha={α}, \beta={β}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
plt.show()
```
Expand All @@ -569,6 +585,8 @@ for α, β in zip(α_vals, β_vals):
alpha=0.5, lw=2,
label=fr'$\alpha={α}, \beta={β}$')
ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
plt.legend()
plt.show()
```
Expand Down Expand Up @@ -614,6 +632,8 @@ for α, β in zip(α_vals, β_vals):
ax.plot(x_grid, u.pdf(x_grid),
alpha=0.5, lw=2,
label=fr'$\alpha={α}, \beta={β}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
plt.show()
```
Expand All @@ -626,6 +646,8 @@ for α, β in zip(α_vals, β_vals):
alpha=0.5, lw=2,
label=fr'$\alpha={α}, \beta={β}$')
ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
plt.legend()
plt.show()
```
Expand Down Expand Up @@ -720,6 +742,8 @@ We can histogram the income distribution we just constructed as follows
x = df['income']
fig, ax = plt.subplots()
ax.hist(x, bins=5, density=True, histtype='bar')
ax.set_xlabel('income')
ax.set_ylabel('density')
plt.show()
```

Expand Down Expand Up @@ -760,6 +784,8 @@ x_amazon = np.asarray(data)
```{code-cell} ipython3
fig, ax = plt.subplots()
ax.hist(x_amazon, bins=20)
ax.set_xlabel('monthly return (percent change)')
ax.set_ylabel('density')
plt.show()
```

Expand All @@ -774,6 +800,8 @@ KDE will generate a smooth curve that approximates the PDF.
```{code-cell} ipython3
fig, ax = plt.subplots()
sns.kdeplot(x_amazon, ax=ax)
ax.set_xlabel('monthly return (percent change)')
ax.set_ylabel('KDE')
plt.show()
```

Expand All @@ -784,6 +812,8 @@ fig, ax = plt.subplots()
sns.kdeplot(x_amazon, ax=ax, bw_adjust=0.1, alpha=0.5, label="bw=0.1")
sns.kdeplot(x_amazon, ax=ax, bw_adjust=0.5, alpha=0.5, label="bw=0.5")
sns.kdeplot(x_amazon, ax=ax, bw_adjust=1, alpha=0.5, label="bw=1")
ax.set_xlabel('monthly return (percent change)')
ax.set_ylabel('KDE')
plt.legend()
plt.show()
```
Expand All @@ -802,6 +832,8 @@ Yet another way to display an observed distribution is via a violin plot.
```{code-cell} ipython3
fig, ax = plt.subplots()
ax.violinplot(x_amazon)
ax.set_ylabel('monthly return (percent change)')
ax.set_xlabel('KDE')
plt.show()
```

Expand All @@ -822,6 +854,8 @@ x_apple = np.asarray(data)
```{code-cell} ipython3
fig, ax = plt.subplots()
ax.violinplot([x_amazon, x_apple])
ax.set_ylabel('monthly return (percent change)')
ax.set_xlabel('KDE')
plt.show()
```

Expand Down Expand Up @@ -855,6 +889,8 @@ x_grid = np.linspace(-50, 65, 200)
fig, ax = plt.subplots()
ax.plot(x_grid, u.pdf(x_grid))
ax.hist(x_amazon, density=True, bins=40)
ax.set_xlabel('monthly return (percent change)')
ax.set_ylabel('density')
plt.show()
```

Expand Down Expand Up @@ -882,6 +918,8 @@ x_grid = np.linspace(-4, 4, 200)
fig, ax = plt.subplots()
ax.plot(x_grid, u.pdf(x_grid))
ax.hist(x_draws, density=True, bins=40)
ax.set_xlabel('x')
ax.set_ylabel('density')
plt.show()
```

Expand Down

0 comments on commit e809a43

Please sign in to comment.