Skip to content

Commit

Permalink
Non-Abelian Dihedral Groups via Group Presentation
Browse files Browse the repository at this point in the history
  • Loading branch information
Fe-r-oz committed Oct 24, 2024
1 parent be50f9c commit d70148d
Show file tree
Hide file tree
Showing 2 changed files with 295 additions and 0 deletions.
1 change: 1 addition & 0 deletions test/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ LDPCDecoders = "3c486d74-64b9-4c60-8b1a-13a564e77efb"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
Nemo = "2edaba10-b0f1-5616-af89-8c11ac63239a"
Oscar = "f1435218-dba5-11e9-1e4d-f1a5fab5fc13"
PyQDecoders = "17f5de1a-9b79-4409-a58d-4d45812840f7"
Quantikz = "b0d11df0-eea3-4d79-b4a5-421488cbf74b"
QuantumInterface = "5717a53b-5d69-4fa3-b976-0bf2f97ca1e5"
Expand Down
294 changes: 294 additions & 0 deletions test/test_ecc_dihedral2bga.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,294 @@
@testitem "ECC 2BGA Reprroduce Tablle 3 lin2024quantum" begin

Check warning on line 1 in test/test_ecc_dihedral2bga.jl

View workflow job for this annotation

GitHub Actions / Spell Check with Typos

"Tablle" should be "Table".
using Nemo: FqFieldElem
using Hecke: group_algebra, GF, abelian_group, gens, quo, one, GroupAlgebra
using QuantumClifford.ECC
using QuantumClifford.ECC: code_k, code_n, two_block_group_algebra_codes
using Oscar: free_group, small_group_identification, describe, order, FPGroupElem, FPGroup, FPGroupElem

function get_code(a_elts::Vector{FPGroupElem}, b_elts::Vector{FPGroupElem}, F2G::GroupAlgebra{FqFieldElem, FPGroup, FPGroupElem})
a = sum(F2G(x) for x in a_elts)
b = sum(F2G(x) for x in b_elts)
c = two_block_group_algebra_codes(a,b)
return c
end

@testset "Reproduce Table 3 of lin2024quantum" begin
# [[24, 8, 3]]
m = 6
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^4]
b_elts = [one(G), s*r^4, r^3, r^4, s*r^2, r]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 24 && code_k(c) == 8
# Oscar.describe(Oscar.small_group(2*m, 4)) is D₁₂, cross-check it with G
@test small_group_identification(G) == (order(G), 4)

# [[24, 12, 2]]
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^3]
b_elts = [one(G), s*r, r^3, r^4, s*r^4, r]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 24 && code_k(c) == 12
# Oscar.describe(Oscar.small_group(2*m, 4)) is D₁₂, cross-check it with G
@test small_group_identification(G) == (order(G), 4)

# [[32, 8, 4]]
m = 8
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^2]
b_elts = [one(G), s*r^5, s*r^4, r^2, s*r^7, s*r^6]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 32 && code_k(c) == 8
# Oscar.describe(Oscar.small_group(2*m, 7)) is D₁₆, cross-check it with G
@test small_group_identification(G) == (order(G), 7)

# [[32, 16, 2]]
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^4]
b_elts = [one(G), s*r^3, s*r^6, r^4, s*r^7, s*r^2]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 32 && code_k(c) == 16
# Oscar.describe(Oscar.small_group(2*m, 7)) is D₁₆, cross-check it with G
@test small_group_identification(G) == (order(G), 7)

# [[36, 12, 3]]
m = 9
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^3]
b_elts = [one(G), s, r, r^3, s*r^3, r^4]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 36 && code_k(c) == 12
# Oscar.describe(Oscar.small_group(2*m, 1)) is D₁₈, cross-check it with G
@test small_group_identification(G) == (order(G), 1)

# [[40, 8, 5]]
m = 10
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^2]
b_elts = [one(G), s*r^4, r^5, r^2, s*r^6, r]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 40 && code_k(c) == 8
# Oscar.describe(Oscar.small_group(2*m, 4)) is D₂₀, cross-check it with G
@test small_group_identification(G) == (order(G), 4)

# [[40, 20, 2]]
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^5]
b_elts = [one(G), s*r^2, r^5, r^6, s*r^7, r]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 40 && code_k(c) == 20
# Oscar.describe(Oscar.small_group(2*m, 4)) is D₂₀, cross-check it with G
@test small_group_identification(G) == (order(G), 4)

# [[48, 8, 6]]
m = 12
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^10]
b_elts = [one(G), s*r^8, r^9, r^4, s*r^2, r^5]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 48 && code_k(c) == 8
# Oscar.describe(Oscar.small_group(2*m, 6)) is D₂₄, cross-check it with G
@test small_group_identification(G) == (order(G), 6)

# [[48, 12, 4]]
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^3]
b_elts = [one(G), s*r^7, r^3, r^4, s*r^10, r^7]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 48 && code_k(c) == 12
# Oscar.describe(Oscar.small_group(2*m, 6)) is D₂₄, cross-check it with G
@test small_group_identification(G) == (order(G), 6)

# [[48, 16, 3]]
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^8]
b_elts = [one(G), s*r^8, r^9, r^8, s*r^4, r^5]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 48 && code_k(c) == 16
# Oscar.describe(Oscar.small_group(2*m, 6)) is D₂₄, cross-check it with G
@test small_group_identification(G) == (order(G), 6)

# [[48, 24, 2]]
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^6]
b_elts = [one(G), s*r^11, r^6, s*r^5, r, r^7]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 48 && code_k(c) == 24
# Oscar.describe(Oscar.small_group(2*m, 6)) is D₂₄, cross-check it with G
@test small_group_identification(G) == (order(G), 6)

# [[56, 8, 7]]
m = 14
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^4]
b_elts = [one(G), s*r^11, r^7, s*r^5, r^12, r^9]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 56 && code_k(c) == 8
# Oscar.describe(Oscar.small_group(2*m, 3)) is D₂₈, cross-check it with G
@test small_group_identification(G) == (order(G), 3)

# [[56, 28, 2]]
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^7]
b_elts = [one(G), s*r^2, r^7, r^8, s*r^9, r]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 56 && code_k(c) == 28
# Oscar.describe(Oscar.small_group(2*m, 3)) is D₂₈, cross-check it with G
@test small_group_identification(G) == (order(G), 3)

# [[60, 12, 5]]
m = 15
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^12]
b_elts = [one(G), s*r^14, r^5, r^12, s*r^11, r^14]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 60 && code_k(c) == 12
# Oscar.describe(Oscar.small_group(2*m, 3)) is D₃₀, cross-check it with G
@test small_group_identification(G) == (order(G), 3)

# [[60, 20, 3]]
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^5]
b_elts = [one(G), s*r^13, r^5, r^12, s*r^3, r^2]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 60 && code_k(c) == 20
# Oscar.describe(Oscar.small_group(2*m, 3)) is D₃₀, cross-check it with G
@test small_group_identification(G) == (order(G), 3)

# [[64, 8, 8]]
m = 16
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^6]
b_elts = [one(G), s*r^12, s*r^9, r^6, s, s*r]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 64 && code_k(c) == 8
# Oscar.describe(Oscar.small_group(2*m, 18)) is D₃₂, cross-check it with G
@test small_group_identification(G) == (order(G), 18)

# [[64, 16, 8]]
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^4]
b_elts = [one(G), s*r^10, s*r^3, r^4, s*r^14, s*r^7]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 64 && code_k(c) == 16
# Oscar.describe(Oscar.small_group(2*m, 18)) is D₃₂, cross-check it with G
@test small_group_identification(G) == (order(G), 18)

# [[64, 32, 2]]
F = free_group(["r", "s"])
r, s = gens(F)
G, = quo(F, [r^m, s^2, (r*s)^2])
F2G = group_algebra(GF(2), G)
r, s = gens(G)
a_elts = [one(G), r^8]
b_elts = [one(G), s*r^11, s*r^12, r^8, s*r^3, s*r^4]
c = get_code(a_elts, b_elts, F2G)
@test order(G) == 2*m
@test describe(G) == "D$(m*2)"
@test code_n(c) == 64 && code_k(c) == 32
# Oscar.describe(Oscar.small_group(2*m, 18)) is D₃₂, cross-check it with G
@test small_group_identification(G) == (order(G), 18)
end
end

0 comments on commit d70148d

Please sign in to comment.