-
Notifications
You must be signed in to change notification settings - Fork 88
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' into dependabot/pip/test/py/numpy-1.22.0
- Loading branch information
Showing
58 changed files
with
2,603 additions
and
124 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
/* | ||
* The MIT License (MIT) | ||
* | ||
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. | ||
* | ||
* Permission is hereby granted, free of charge, to any person obtaining a copy | ||
* of this software and associated documentation files (the "Software"), to deal | ||
* in the Software without restriction, including without limitation the rights | ||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
* copies of the Software, and to permit persons to whom the Software is | ||
* furnished to do so, subject to the following conditions: | ||
* | ||
* The above copyright notice and this permission notice shall be included in | ||
* all copies or substantial portions of the Software. | ||
* | ||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
* THE SOFTWARE. | ||
*/ | ||
#include <migraphx/onnx/op_parser.hpp> | ||
#include <migraphx/ranges.hpp> | ||
#include <migraphx/make_op.hpp> | ||
#include <migraphx/instruction.hpp> | ||
|
||
namespace migraphx { | ||
inline namespace MIGRAPHX_INLINE_NS { | ||
namespace onnx { | ||
|
||
struct parse_groupnorm : op_parser<parse_groupnorm> | ||
{ | ||
std::vector<op_desc> operators() const { return {{"GroupNormalization"}}; } | ||
|
||
instruction_ref parse(const op_desc& /*opd*/, | ||
const onnx_parser& parser, | ||
const onnx_parser::node_info& info, | ||
std::vector<instruction_ref> args) const | ||
{ | ||
float epsilon = 1e-5f; | ||
if(contains(info.attributes, "epsilon")) | ||
{ | ||
epsilon = parser.parse_value(info.attributes.at("epsilon")).at<float>(); | ||
} | ||
size_t num_groups; | ||
if(contains(info.attributes, "num_groups")) | ||
{ | ||
num_groups = parser.parse_value(info.attributes.at("num_groups")).at<size_t>(); | ||
} | ||
else | ||
{ | ||
MIGRAPHX_THROW("PARSE_GROUPNORM: num_groups must be available"); | ||
} | ||
|
||
if(args.size() != 3) | ||
{ | ||
MIGRAPHX_THROW("PARSE_GROUPNORM: invalid input count"); | ||
} | ||
|
||
auto x = args.at(0); | ||
auto scale = args.at(1); | ||
auto bias = args.at(2); | ||
|
||
auto x_shape = x->get_shape(); | ||
auto x_dtype = x_shape.type(); | ||
auto x_dims = x_shape.lens(); | ||
|
||
if(x_shape.ndim() <= 2) | ||
{ | ||
MIGRAPHX_THROW("PARSE_GROUPNORM: invalid input shape"); | ||
} | ||
|
||
auto c = x_shape.lens().at(1); | ||
if(c % num_groups != 0) | ||
{ | ||
MIGRAPHX_THROW( | ||
"PARSE_GROUPNORM: num_groups should be a divisor of the number of channels"); | ||
} | ||
auto group_size = c / num_groups; | ||
if(scale->get_shape().ndim() != 1 or scale->get_shape().lens().at(0) != num_groups) | ||
{ | ||
MIGRAPHX_THROW("PARSE_GROUPNORM: scale tensor shape should be num_groups"); | ||
} | ||
if(bias->get_shape().ndim() != 1 or bias->get_shape().lens().at(0) != num_groups) | ||
{ | ||
MIGRAPHX_THROW("PARSE_GROUPNORM: bias tensor shape should be num_groups"); | ||
} | ||
|
||
// Original shape: N x C x D1 x ... x Dn | ||
// New shape: N x num_groups x C // num_groups x D1 x ... x Dn | ||
|
||
std::vector<size_t> dims = {x_dims.at(0), num_groups, group_size}; | ||
std::copy(x_dims.begin() + 2, x_dims.end(), std::back_inserter(dims)); | ||
auto x_reshaped = info.add_instruction(make_op("reshape", {{"dims", dims}}), x); | ||
|
||
// Axes for D1 x ... x Dn | ||
std::vector<size_t> axes(dims.size() - 2); | ||
std::iota(axes.begin(), axes.end(), 2); | ||
|
||
// y = (x - mean) * rsqrt(variance + epsilon) * scale + bias | ||
// mean = reduce_mean({D1, D2, ... Dk}, x) | ||
// variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2) | ||
|
||
auto mean = info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x_reshaped); | ||
auto x_sub_mean = info.add_common_op("sub", x_reshaped, mean); | ||
auto x_sqdiff_mean = info.add_common_op("sqdiff", x_reshaped, mean); | ||
auto variance = | ||
info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x_sqdiff_mean); | ||
epsilon = | ||
(x_dtype == migraphx::shape::half_type and std::abs(epsilon) < 1e-7) ? 1e-7 : epsilon; | ||
auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_dtype}, {epsilon}}); | ||
auto var_eps = info.add_common_op("add", variance, eps); | ||
auto rsqrt = info.add_instruction(make_op("rsqrt"), var_eps); | ||
auto result = info.add_common_op("mul", x_sub_mean, rsqrt); | ||
auto scale_bcast = | ||
info.add_instruction(make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), scale); | ||
auto bias_bcast = | ||
info.add_instruction(make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), bias); | ||
auto scaled = info.add_instruction(make_op("mul"), result, scale_bcast); | ||
auto y = info.add_instruction(make_op("add"), scaled, bias_bcast); | ||
auto y_reshaped = info.add_instruction(make_op("reshape", {{"dims", x_dims}}), y); | ||
return y_reshaped; | ||
} | ||
}; | ||
|
||
} // namespace onnx | ||
} // namespace MIGRAPHX_INLINE_NS | ||
} // namespace migraphx |
Oops, something went wrong.