-
Notifications
You must be signed in to change notification settings - Fork 88
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' into missing_exports
- Loading branch information
Showing
9 changed files
with
513 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,241 @@ | ||
/* | ||
* The MIT License (MIT) | ||
* | ||
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. | ||
* | ||
* Permission is hereby granted, free of charge, to any person obtaining a copy | ||
* of this software and associated documentation files (the "Software"), to deal | ||
* in the Software without restriction, including without limitation the rights | ||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
* copies of the Software, and to permit persons to whom the Software is | ||
* furnished to do so, subject to the following conditions: | ||
* | ||
* The above copyright notice and this permission notice shall be included in | ||
* all copies or substantial portions of the Software. | ||
* | ||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
* THE SOFTWARE. | ||
*/ | ||
|
||
#include <migraphx/onnx/op_parser.hpp> | ||
#include <migraphx/onnx/padding.hpp> | ||
#include <migraphx/onnx/conv.hpp> | ||
#include <migraphx/ranges.hpp> | ||
#include <migraphx/make_op.hpp> | ||
#include <migraphx/onnx/checks.hpp> | ||
#include <migraphx/onnx/broadcast_qdq.hpp> | ||
#include <migraphx/instruction.hpp> | ||
#include <migraphx/stringutils.hpp> | ||
|
||
namespace migraphx { | ||
inline namespace MIGRAPHX_INLINE_NS { | ||
namespace onnx { | ||
|
||
/* | ||
********************************************************************************* | ||
* Reference: see QLinearConv in * | ||
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md * | ||
********************************************************************************* | ||
com.microsoft.QLinearConv | ||
Version | ||
This version of the operator has been available since version 1 of the 'com.microsoft' operator set. | ||
ATTRIBUTES: | ||
auto_pad : string | ||
channels_last : int | ||
dilations : list of ints | ||
group : int | ||
kernel_shape : list of ints | ||
pads : list of ints | ||
strides : list of ints | ||
INPUTS (8 - 9): | ||
x : T1 | ||
x_scale : tensor(float) | ||
x_zero_point : T1 | ||
w : T2 | ||
w_scale : tensor(float) | ||
w_zero_point : T2 | ||
y_scale : tensor(float) | ||
y_zero_point : T3 | ||
B (optional) : T4 | ||
OUTPUTS: | ||
y : T3 | ||
Type Constraints: | ||
T1 : tensor(int8), tensor(uint8) | ||
T2 : tensor(int8), tensor(uint8) | ||
T3 : tensor(int8), tensor(uint8) | ||
T4 : tensor(int32) | ||
More details also at: | ||
https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__QLinearConv.html | ||
*/ | ||
|
||
struct parse_qlinearconv : op_parser<parse_qlinearconv> | ||
{ | ||
std::vector<op_desc> operators() const { return {{"QLinearConv"}}; } | ||
|
||
// basic type checking for QLinearConv Operator | ||
void check_inputs(const std::vector<instruction_ref>& inp_arg) const | ||
{ | ||
if(inp_arg.size() < 8) | ||
MIGRAPHX_THROW("QLINEARCONV: missing inputs"); | ||
|
||
const instruction_ref& in_x = inp_arg[0]; | ||
const instruction_ref& in_scale_x = inp_arg[1]; | ||
const instruction_ref& in_w = inp_arg[3]; | ||
const instruction_ref& in_scale_w = inp_arg[4]; | ||
const instruction_ref& in_scale_y = inp_arg[6]; | ||
|
||
auto sh_x = in_x->get_shape(); | ||
auto sh_w = in_w->get_shape(); | ||
auto type_x = sh_x.type(); | ||
auto type_w = sh_w.type(); | ||
|
||
assert(in_x->get_shape().ndim() > 2); | ||
|
||
if(type_x != shape::int8_type and type_x != shape::uint8_type) | ||
MIGRAPHX_THROW("QLINEARCONV: unsupported input type"); | ||
if(type_w != shape::int8_type and type_w != shape::uint8_type) | ||
MIGRAPHX_THROW("QLINEARCONV: unsupported weight type"); | ||
if(in_scale_x->get_shape().type() != shape::float_type) | ||
MIGRAPHX_THROW("QLINEARCONV x scale type should be float"); | ||
if(in_scale_w->get_shape().type() != shape::float_type) | ||
MIGRAPHX_THROW("QLINEARCONV: wt scale type should be float"); | ||
if(in_scale_y->get_shape().type() != shape::float_type) | ||
MIGRAPHX_THROW("QLINEARCONV: y scale type should be float"); | ||
if(inp_arg.size() > 8 and inp_arg[8]->get_shape().type() != shape::int32_type) | ||
MIGRAPHX_THROW("QLINEARCONV y bias should be int32"); | ||
} | ||
|
||
// process all attributes of QLinearConv Operator.. | ||
value process_attributes(const onnx_parser& parser, | ||
const onnx_parser::node_info& info, | ||
const std::vector<instruction_ref>& args) const | ||
{ | ||
value values; | ||
|
||
const auto& in_x = args[0]; | ||
const auto& wt = args[3]; | ||
|
||
size_t kdims = in_x->get_shape().ndim() - 2; | ||
|
||
check_padding_mode(info, "QLINEARCONV"); | ||
|
||
values["stride"] = std::vector<int>(kdims, 1); | ||
values["dilation"] = std::vector<int>(kdims, 1); | ||
values["padding"] = std::vector<int>(kdims, 0); | ||
values["group"] = 1; | ||
|
||
if(contains(info.attributes, "group")) | ||
values["group"] = parser.parse_value(info.attributes.at("group")).template at<int>(); | ||
|
||
if(contains(info.attributes, "strides")) | ||
{ | ||
std::vector<int> st; | ||
copy(info.attributes.at("strides").ints(), std::back_inserter(st)); | ||
check_attr_sizes(kdims, st.size(), "QLINEARCONV: inconsistent strides"); | ||
values["stride"] = st; | ||
} | ||
|
||
if(contains(info.attributes, "dilations")) | ||
{ | ||
std::vector<int> dil; | ||
copy(info.attributes.at("dilations").ints(), std::back_inserter(dil)); | ||
check_attr_sizes(kdims, dil.size(), "QLINEARCONV: inconsistent dilations"); | ||
values["dilation"] = dil; | ||
} | ||
|
||
if(contains(info.attributes, "pads")) | ||
{ | ||
std::vector<int> pads; | ||
copy(info.attributes.at("pads").ints(), std::back_inserter(pads)); | ||
check_attr_sizes(kdims, pads.size() / 2, "QLINEARCONV: inconsistent padding"); | ||
values["padding"] = pads; | ||
} | ||
else if(contains(info.attributes, "auto_pad")) | ||
{ | ||
auto in_lens = in_x->get_shape().lens(); | ||
auto wt_lens = wt->get_shape().lens(); | ||
std::vector<std::size_t> k_lens(wt_lens.begin() + 2, wt_lens.end()); | ||
std::vector<int64_t> pads = values["padding"].to_vector<std::int64_t>(); | ||
cal_auto_padding_size( | ||
info, values, k_lens, values["dilation"].to_vector<std::size_t>(), in_lens, pads); | ||
values["padding"] = pads; | ||
} | ||
|
||
recalc_conv_attributes(values, kdims); | ||
|
||
return values; | ||
} | ||
|
||
instruction_ref add_bias_to_conv(const instruction_ref bias_arg, | ||
const instruction_ref conv_instr, | ||
const onnx_parser::node_info& info) const | ||
{ | ||
auto conv_sh = conv_instr->get_shape(); | ||
auto conv_lens = conv_sh.lens(); | ||
auto conv_type = conv_sh.type(); | ||
|
||
auto broadcast_bias = info.add_instruction( | ||
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", conv_lens}}), bias_arg); | ||
auto f_bias = | ||
info.add_instruction(make_op("convert", {{"target_type", conv_type}}), broadcast_bias); | ||
|
||
return info.add_instruction(migraphx::make_op("add"), conv_instr, f_bias); | ||
}; | ||
|
||
instruction_ref parse(const op_desc& /* opd */, | ||
const onnx_parser& parser, | ||
const onnx_parser::node_info& info, | ||
const std::vector<instruction_ref>& args) const | ||
{ | ||
check_inputs(args); | ||
|
||
auto values = process_attributes(parser, info, args); | ||
|
||
// input: quantized x, scale, zero_pt | ||
const instruction_ref& in_x = args[0]; | ||
const instruction_ref& in_scale_x = args[1]; | ||
const instruction_ref& in_zero_pt_x = args[2]; | ||
|
||
// input: quantized weights, scale, zero_pt | ||
const instruction_ref& in_w = args[3]; | ||
const instruction_ref& in_scale_w = args[4]; | ||
const instruction_ref& in_zero_pt_w = args[5]; | ||
|
||
// for the dequantized output y: scale & zero_pt | ||
const instruction_ref& in_scale_y = args[6]; | ||
const instruction_ref& in_zero_pt_y = args[7]; | ||
|
||
auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, in_scale_x, in_zero_pt_x, info); | ||
|
||
auto dquant_w = bcast_qdq_instr("dequantizelinear", in_w, in_scale_w, in_zero_pt_w, info); | ||
|
||
auto conv_op = migraphx::make_op("convolution", values); | ||
|
||
auto conv_x_w = info.add_instruction(conv_op, dquant_x, dquant_w); | ||
|
||
// Biases, if any.. : is an optional argument. | ||
if(args.size() > 8) | ||
conv_x_w = add_bias_to_conv(args[8], conv_x_w, info); | ||
|
||
auto quant_conv = | ||
bcast_qdq_instr("quantizelinear", conv_x_w, in_scale_y, in_zero_pt_y, info); | ||
return quant_conv; | ||
} | ||
}; | ||
|
||
} // namespace onnx | ||
} // namespace MIGRAPHX_INLINE_NS | ||
} // namespace migraphx |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.