Skip to content

Commit

Permalink
Split dynamic shape parsing update (#3034)
Browse files Browse the repository at this point in the history
  • Loading branch information
CharlieL7 authored May 31, 2024
1 parent b9cce08 commit 6b79d4e
Show file tree
Hide file tree
Showing 9 changed files with 417 additions and 66 deletions.
198 changes: 135 additions & 63 deletions src/onnx/parse_split.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,131 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

auto parse_dyn_split(const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args,
int64_t tuned_axis)
{
if(contains(info.attributes, "split"))
{
MIGRAPHX_THROW("PARSE_SPLIT: dynamic input and non-fixed split axis and `split` "
"attribute not supported");
}
if(args.size() == 2)
{
MIGRAPHX_THROW("PARSE_SPLIT: dynamic input and non-fixed split axis and `split` "
"input not supported");
}

std::size_t num_outputs = info.num_outputs;
std::vector<instruction_ref> ret_ins(num_outputs);

// Doing shape calculations for the splits in the graph
auto split_dim = info.add_instruction(
make_op("dimensions_of", {{"start", tuned_axis}, {"end", tuned_axis + 1}}), args[0]);
shape int64_scalar_shape{shape::int64_type, {1}, {0}};
auto num_outputs_lit = info.add_literal(literal{int64_scalar_shape, {num_outputs}});
auto num_outputs_minus_1_lit = info.add_literal(literal{int64_scalar_shape, {num_outputs - 1}});
// (A + (B - 1)) / B == ceil(A / B)
auto chunk_size = info.add_instruction(
make_op("div"),
info.add_instruction(make_op("add"), split_dim, num_outputs_minus_1_lit),
num_outputs_lit);
for(int n = 0; n < num_outputs - 1; ++n)
{
// slice(input, starts = {n * chunk_size}, ends = {(n+1) * chunk_size}); axes =
// {tuned_axis}
ret_ins.at(n) = info.add_instruction(
make_op("slice", {{"axes", {tuned_axis}}}),
args[0],
info.add_instruction(
make_op("mul"), chunk_size, info.add_literal(literal{int64_scalar_shape, {n}})),
info.add_instruction(make_op("mul"),
chunk_size,
info.add_literal(literal{int64_scalar_shape, {n + 1}})));
}
// last slice: slice(input, starts = {n * chunk_size}); ends = max_int, axes =
// {tuned_axis}
ret_ins.at(num_outputs - 1) = info.add_instruction(
make_op("slice", {{"axes", {tuned_axis}}, {"ends", {std::numeric_limits<int64_t>::max()}}}),
args[0],
info.add_instruction(make_op("mul"),
chunk_size,
info.add_literal(literal{int64_scalar_shape, {num_outputs - 1}})));
return ret_ins;
}

auto parse_static_split(const onnx_parser::node_info& info,
const onnx_parser& parser,
const std::vector<instruction_ref>& args,
int64_t tuned_axis)
{
const auto& input_shape = args[0]->get_shape();
// either static shape or fixed dynamic_dimension for split axis
auto tuned_axis_len = input_shape.to_static(0).lens().at(tuned_axis);
std::vector<int64_t> vec_splits;
if(contains(info.attributes, "split"))
{
literal s = parser.parse_value(info.attributes.at("split"));
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
}
else if(args.size() == 2)
{
auto s = args[1]->eval();
check_arg_empty(s, "PARSE_SPLIT: non-constant `split` input is not supported");
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
}
// no split attribute, input is equally divided
else
{
std::size_t num_outputs = info.num_outputs;
// the num_outputs attribute seems to be redundant since we already have
// node_info::num_outputs, but we can still perform an error check
if(contains(info.attributes, "num_outputs"))
{
num_outputs = parser.parse_value(info.attributes.at("num_outputs")).at<std::size_t>();
if(num_outputs != info.num_outputs)
{
MIGRAPHX_THROW("PARSE_SPLIT: num_outputs attribute " + std::to_string(num_outputs) +
" doesn't match actual number of outputs " +
std::to_string(info.num_outputs) + "!");
}
}
if(tuned_axis_len % num_outputs == 0)
{
std::size_t chunk_size = tuned_axis_len / num_outputs;
vec_splits.resize(num_outputs, chunk_size);
}
else
{
std::size_t chunk_size = tuned_axis_len / num_outputs + 1;
std::size_t last_chunk_size = tuned_axis_len - chunk_size * (num_outputs - 1);
vec_splits.resize(num_outputs - 1, chunk_size);
vec_splits.push_back(last_chunk_size);
}
}

if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
static_cast<int64_t>(tuned_axis_len))
{
MIGRAPHX_THROW(
"PARSE_SPLIT: sum of split attribute unequal to dim size of axis! tuned axis:" +
std::to_string(tuned_axis_len) + " Output " + to_string_range(vec_splits) + " Rank " +
std::to_string(input_shape.ndim()));
}

std::vector<instruction_ref> ret_ins;
int64_t start = 0;
for(auto sl : vec_splits)
{
ret_ins.push_back(info.add_instruction(
make_op("slice", {{"axes", {tuned_axis}}, {"starts", {start}}, {"ends", {start + sl}}}),
args[0]));
start += sl;
}

return ret_ins;
}

struct parse_split : op_parser<parse_split>
{
std::vector<op_desc> operators() const { return {{"Split"}}; }
Expand All @@ -49,75 +174,22 @@ struct parse_split : op_parser<parse_split>
axis = parser.parse_value(info.attributes.at("axis")).at<int>();
}

auto lens = args[0]->get_shape().lens();
int64_t n_rank = lens.size();
int64_t tuned_axis = tune_axis(n_rank, axis, opd.op_name);
const auto& input_shape = args[0]->get_shape();
// axis over which the split occurs (split_axis)
int64_t tuned_axis = tune_axis(input_shape.ndim(), axis, opd.op_name);

std::vector<int64_t> vec_splits;
if(contains(info.attributes, "split"))
{
literal s = parser.parse_value(info.attributes.at("split"));
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
}
else if(args.size() == 2)
{
auto s = args[1]->eval();
check_arg_empty(s, "Split: dynamic shape is not supported");
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
}
// no split attribute, input is equally divided
else
{
std::size_t num_outputs = info.num_outputs;
// the num_outputs attribute seems to be redundant since we already have
// node_info::num_outputs, but we can still perform an error check
if(contains(info.attributes, "num_outputs"))
{
num_outputs =
parser.parse_value(info.attributes.at("num_outputs")).at<std::size_t>();
if(num_outputs != info.num_outputs)
{
MIGRAPHX_THROW("PARSE_SPLIT: num_outputs attribute " +
std::to_string(num_outputs) +
" doesn't match actual number of outputs " +
std::to_string(info.num_outputs) + "!");
}
}

if(lens[tuned_axis] % num_outputs == 0)
{
std::size_t chunk_size = lens[tuned_axis] / num_outputs;
vec_splits.resize(num_outputs, chunk_size);
}
else
{
std::size_t chunk_size = lens[tuned_axis] / num_outputs + 1;
std::size_t last_chunk_size = lens[tuned_axis] - chunk_size * (num_outputs - 1);
vec_splits.resize(num_outputs - 1, chunk_size);
vec_splits.push_back(last_chunk_size);
}
}
auto split_axis_is_fixed = [&]() {
return input_shape.dyn_dims().at(tuned_axis).is_fixed();
};

if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
static_cast<int64_t>(lens[tuned_axis]))
if(input_shape.dynamic() and not split_axis_is_fixed())
{
MIGRAPHX_THROW(
"PARSE_SPLIT: sum of split attribute unequal to dim size of axis! tuned axis:" +
std::to_string(lens[tuned_axis]) + " Output " + to_string_range(vec_splits) +
" Rank " + std::to_string(n_rank) + " Len outs " + to_string_range(lens));
return parse_dyn_split(info, args, tuned_axis);
}

std::vector<instruction_ref> ret_ins;
int64_t start = 0;
for(auto sl : vec_splits)
else
{
ret_ins.push_back(info.add_instruction(
make_op("slice", {{"axes", {axis}}, {"starts", {start}}, {"ends", {start + sl}}}),
args[0]));
start += sl;
return parse_static_split(info, parser, args, tuned_axis);
}

return ret_ins;
}
};

Expand Down
71 changes: 71 additions & 0 deletions test/onnx/gen_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -10828,6 +10828,77 @@ def split_test_invalid_num_outputs():
return ([node], [x], [y1, y2, y3, y4])


@onnx_test()
def split_dyn_input_fixed_split_axis_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 15])
y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [None, 5])
y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [None, 5])
y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [None, 5])

node = onnx.helper.make_node('Split',
inputs=['x'],
outputs=['y1', 'y2', 'y3'],
axis=1)

return ([node], [x], [y1, y2, y3])


@onnx_test()
def split_dyn_input_dyn_split_axis_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 15])
y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [None, 5])
y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [None, 5])
y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [None, 5])

node = onnx.helper.make_node('Split',
inputs=['x'],
outputs=['y1', 'y2', 'y3'],
axis=0)

return ([node], [x], [y1, y2, y3])


@onnx_test()
def split_dyn_input_split_attr_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 15])
y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [None, 5])
y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [None, 5])
y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [None, 5])

node = onnx.helper.make_node('Split',
inputs=['x'],
outputs=['y1', 'y2', 'y3'],
axis=0,
split=[7, 4, 4])

return ([node], [x], [y1, y2, y3])


@onnx_test()
def split_dyn_input_split_input_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 15])
y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [None, 5])
y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [None, 5])
y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [None, 5])

split = np.ones(3) * 5
split_tensor = helper.make_tensor(name="split",
data_type=TensorProto.INT64,
dims=split.shape,
vals=split.astype(np.int64))
const_node = helper.make_node("Constant",
inputs=[],
outputs=['split'],
value=split_tensor)

node = onnx.helper.make_node('Split',
inputs=['x', 'split'],
outputs=['y1', 'y2', 'y3'],
axis=0)

return ([const_node, node], [x], [y1, y2, y3])


@onnx_test()
def sqrt_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
Expand Down
Loading

0 comments on commit 6b79d4e

Please sign in to comment.