Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add QLinearMul operator #2430

Merged
merged 4 commits into from
Nov 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ namespace onnx {

/*
*********************************************************************************
* Reference: see QLinearAdd in *
* Reference: see QLinearAdd, QLinearMul in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************

Expand All @@ -49,6 +49,17 @@ namespace onnx {
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.

com.microsoft.QLinearMul
Performs element-wise binary multiplication on 8 bit data types (with Numpy-style broadcasting
support).

C = ((A - A_zero_point) * (B - B_zero_point)) * (A_scale * B_scale)/C_scale + C_zero_point

Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.

General definition of binary QLinear* ops:
Inputs (7 - 8)
A : T
First operand.
Expand Down Expand Up @@ -88,15 +99,18 @@ namespace onnx {

*/

struct parse_qlinearadd : op_parser<parse_qlinearadd>
struct parse_qlinearbinary : op_parser<parse_qlinearbinary>
{
std::vector<op_desc> operators() const { return {{"QLinearAdd"}}; }
std::vector<op_desc> operators() const
{
return {{"QLinearAdd", "add"}, {"QLinearMul", "mul"}};
}

// basic type checking for QLinearAdd Operator
void check_inputs(const std::vector<instruction_ref>& args) const
// basic type checking for binary QLinear Operator
void check_inputs(const std::vector<instruction_ref>& args, const std::string& op_name) const
{
if(args.size() < 7)
MIGRAPHX_THROW("QLINEARADD: missing inputs");
MIGRAPHX_THROW(op_name + ": missing inputs");

const auto& in_a = args[0];
const auto& in_b = args[3];
Expand All @@ -107,19 +121,19 @@ struct parse_qlinearadd : op_parser<parse_qlinearadd>
auto type_a = sh_a.type();
auto type_b = sh_b.type();
if(type_a != migraphx::shape::int8_type and type_a != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARADD: unsupported input type");
MIGRAPHX_THROW(op_name + ": unsupported input type");
if(type_b != migraphx::shape::int8_type and type_b != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARADD: unsupported input type");
MIGRAPHX_THROW(op_name + ": unsupported input type");
if(type_a != type_b)
MIGRAPHX_THROW("QLINEARADD: mismatched input types");
MIGRAPHX_THROW(op_name + ": mismatched input types");
}

instruction_ref parse(const op_desc& /* opd */,
instruction_ref parse(const op_desc& opd,
const onnx_parser& /*parser*/,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
check_inputs(args);
check_inputs(args, opd.op_name);

// A
const auto& in_a = args[0];
Expand All @@ -134,8 +148,8 @@ struct parse_qlinearadd : op_parser<parse_qlinearadd>
const auto& in_zero_pt_b = args[5];
auto dquant_b = bcast_qdq_instr("dequantizelinear", in_b, in_scale_b, in_zero_pt_b, info);

// C = A + B
auto out_c = info.add_common_op("add", dquant_a, dquant_b);
// C = op(A, B)
auto out_c = info.add_common_op(opd.op_name, dquant_a, dquant_b);

const auto& in_scale_c = args[6];

Expand Down
55 changes: 55 additions & 0 deletions test/onnx/gen_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -6179,6 +6179,61 @@ def qlinearmatmul_3D_test():
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])


@onnx_test()
def qlinearmul_test():
a = helper.make_tensor_value_info('A', TensorProto.UINT8, [64])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0])

b = helper.make_tensor_value_info('B', TensorProto.UINT8, [64])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [], [16])

sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [],
[100])

c = helper.make_tensor_value_info('C', TensorProto.UINT8, [64])

node = onnx.helper.make_node(
'QLinearMul',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])


@onnx_test()
def qlinearmul_bcast_test():
a = helper.make_tensor_value_info('A', TensorProto.INT8, [64])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.INT8, [], [0])

b = helper.make_tensor_value_info('B', TensorProto.INT8, [1, 1, 64])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.INT8, [], [128])

sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.15])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.INT8, [], [32])

c = helper.make_tensor_value_info('C', TensorProto.INT8, [1, 1, 64])

node = onnx.helper.make_node(
'QLinearMul',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])


@onnx_test()
def quantizelinear_test():
arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
Expand Down
53 changes: 53 additions & 0 deletions test/onnx/onnx_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5754,6 +5754,59 @@ TEST_CASE(qlinearmatmul_2D_test)
EXPECT(p.sort() == prog.sort());
}

TEST_CASE(qlinearmul_test)
{
migraphx::program p;
auto* mm = p.get_main_module();

auto a = mm->add_parameter("A", {migraphx::shape::uint8_type, {64}});
auto b = mm->add_parameter("B", {migraphx::shape::uint8_type, {64}});

auto sc_a = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_a = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {0}});

auto sc_b = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_b = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {16}});

auto sc_c = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_c = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {100}});

auto scale_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_a);

auto z_pt_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_a);

auto fp_a =
mm->add_instruction(migraphx::make_op("dequantizelinear"), a, scale_a_bcast, z_pt_a_bcast);

auto scale_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_b);

auto z_pt_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_b);

auto fp_b =
mm->add_instruction(migraphx::make_op("dequantizelinear"), b, scale_b_bcast, z_pt_b_bcast);

auto fp_c = mm->add_instruction(migraphx::make_op("mul"), fp_a, fp_b);

auto scale_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_c);

auto z_pt_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_c);

auto c =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_c, scale_c_bcast, z_pt_c_bcast);

mm->add_return({c});

auto prog = migraphx::parse_onnx("qlinearmul_test.onnx");

EXPECT(p.sort() == prog.sort());
}

migraphx::instruction_ref insert_quantizelinear_clip(migraphx::module& m,
const migraphx::instruction_ref ins,
const migraphx::instruction_ref round,
Expand Down
Binary file added test/onnx/qlinearmul_bcast_test.onnx
Binary file not shown.
Binary file added test/onnx/qlinearmul_test.onnx
Binary file not shown.
75 changes: 75 additions & 0 deletions test/onnx/verify_onnx.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1895,6 +1895,81 @@ TEST_CASE(qlinearmatmul_3D_test)
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}

TEST_CASE(qlinearmul_test)
{
// github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#com.microsoft.QLinearMul
migraphx::program p = migraphx::parse_onnx("qlinearmul_test.onnx");
p.compile(migraphx::make_target("ref"));

migraphx::shape a{migraphx::shape::uint8_type, {64}};
std::vector<uint8_t> data_a = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50,
52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76,
78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102,
104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126};

migraphx::shape b{migraphx::shape::uint8_type, {64}};
std::vector<uint8_t> data_b = {128, 126, 124, 122, 120, 118, 116, 114, 112, 110, 108, 106, 104,
102, 100, 98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78,
76, 74, 72, 70, 68, 66, 64, 62, 60, 58, 56, 54, 52,
50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26,
24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2};

migraphx::parameter_map pp;
pp["A"] = migraphx::argument(a, data_a.data());
pp["B"] = migraphx::argument(b, data_b.data());
auto result = p.eval(pp).back();

std::vector<uint8_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });

std::vector<uint8_t> gold = {100, 111, 122, 132, 142, 151, 160, 169, 177, 185, 192, 199, 206,
212, 218, 223, 228, 233, 237, 241, 244, 247, 250, 252, 254, 255,
255, 255, 255, 255, 255, 255, 254, 252, 250, 247, 244, 241, 237,
233, 228, 223, 218, 212, 206, 199, 192, 185, 177, 169, 160, 151,
142, 132, 122, 111, 100, 89, 77, 65, 52, 39, 26, 12};

EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}

TEST_CASE(qlinearmul_bcast_test)
{
// github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#com.microsoft.QLinearMul
migraphx::program p = migraphx::parse_onnx("qlinearmul_bcast_test.onnx");
p.compile(migraphx::make_target("ref"));

migraphx::shape a{migraphx::shape::int8_type, {64}};
std::vector<int8_t> data_a = {-64, -62, -60, -58, -56, -54, -52, -50, -48, -46, -44, -42, -40,
-38, -36, -34, -32, -30, -28, -26, -24, -22, -20, -18, -16, -14,
-12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12,
14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,
40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62};

migraphx::shape b{migraphx::shape::int8_type, {1, 1, 64}};
std::vector<int8_t> data_b = {96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 72,
70, 68, 66, 64, 62, 60, 58, 56, 54, 52, 50, 48, 46,
44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20,
18, 16, 14, 12, 10, 8, 6, 4, 2, 0, -2, -4, -6,
-8, -10, -12, -14, -16, -18, -20, -22, -24, -26, -28, -30};

migraphx::parameter_map pp;
pp["A"] = migraphx::argument(a, data_a.data());
pp["B"] = migraphx::argument(b, data_b.data());
auto result = p.eval(pp).back();

std::vector<int8_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });

std::vector<int8_t> gold = {-128, -128, -128, -128, -128, -128, -128, -128, -128, -126, -118,
-109, -101, -93, -86, -78, -70, -63, -56, -49, -42, -35,
-28, -21, -15, -9, -2, 4, 10, 15, 21, 27, 32,
37, 42, 47, 52, 57, 62, 66, 70, 75, 79, 83,
86, 90, 94, 97, 100, 103, 106, 109, 112, 115, 117,
119, 122, 124, 126, 127, 127, 127, 127, 127};

EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}

TEST_CASE(resize_downsample_f_test)
{
migraphx::program p = migraphx::parse_onnx("resize_downsample_f_test.onnx");
Expand Down
Loading