Skip to content

Commit

Permalink
Merge pull request #634 from ROCm/main_perf-softmax
Browse files Browse the repository at this point in the history
Softmax kernel
  • Loading branch information
rahulbatra85 authored Sep 6, 2024
2 parents 177d0bd + e42690d commit 6d283a2
Show file tree
Hide file tree
Showing 3 changed files with 225 additions and 0 deletions.
2 changes: 2 additions & 0 deletions .github/workflows/amd_perf_kernel_Integration_tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -126,6 +126,8 @@ jobs:
- name: Run Perf Kernels Unit Tests
run: |
pytest -vvv ./python/perf-kernels/flash-attention.py
pytest -vvvv ./python/perf-kernels/softmax.py
- name: Run Perf Kernels Benchmark
run: |
python ./python/perf-kernels/flash-attention.py
python ./python/perf-kernels/softmax.py
4 changes: 4 additions & 0 deletions python/perf-kernels/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -69,3 +69,7 @@ small block sizes aren't natively supported by `tl.dot` operator.

Despite being numerically correct, this kernel performed worse than a corresponding GEMM kernel that
used `tl.dot` with minimum block size equal to $16$.

## `softmax.py`

Kernel that implements Softmax over a row of tensor.
219 changes: 219 additions & 0 deletions python/perf-kernels/softmax.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,219 @@
import argparse
import torch
import sys
import pytest

import triton
import triton.language as tl
from triton.runtime import driver


def is_cuda():
return triton.runtime.driver.active.get_current_target().backend == "cuda"


def is_hip():
return triton.runtime.driver.active.get_current_target().backend == "hip"


def is_cdna():
return is_hip() and triton.runtime.driver.active.get_current_target().arch in ('gfx940', 'gfx941', 'gfx942',
'gfx90a', 'gfx908')


def get_cuda_autotune_config():
return [
triton.Config({}, num_warps=4, num_stages=1),
triton.Config({}, num_warps=8, num_stages=1),
triton.Config({}, num_warps=16, num_stages=1),
]


def get_hip_autotune_config():
return [
triton.Config({'waves_per_eu': 1}, num_warps=4, num_stages=1),
triton.Config({'waves_per_eu': 1}, num_warps=8, num_stages=1),
triton.Config({'waves_per_eu': 1}, num_warps=16, num_stages=1),
triton.Config({'waves_per_eu': 2}, num_warps=4, num_stages=1),
triton.Config({'waves_per_eu': 2}, num_warps=8, num_stages=1),
triton.Config({'waves_per_eu': 2}, num_warps=16, num_stages=1),
triton.Config({'waves_per_eu': 4}, num_warps=4, num_stages=1),
triton.Config({'waves_per_eu': 4}, num_warps=8, num_stages=1),
triton.Config({'waves_per_eu': 4}, num_warps=16, num_stages=1),
]


def get_autotune_config():
if is_cuda():
return get_cuda_autotune_config()
else:
return get_hip_autotune_config()


@triton.autotune(configs=get_autotune_config(), key=['n_rows', 'n_cols'], use_cuda_graph=True)
@triton.jit
def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols,
BLOCK_SIZE: tl.constexpr):
row_start = tl.program_id(0)
row_step = tl.num_programs(0)
col_offsets = tl.arange(0, BLOCK_SIZE)
mask = col_offsets < n_cols
for row_idx in tl.range(row_start, n_rows, row_step):
row_start_ptr = input_ptr + row_idx * input_row_stride
input_ptrs = row_start_ptr + col_offsets
input_ptrs = tl.multiple_of(input_ptrs, (16, ))
row = tl.load(input_ptrs, mask=mask, other=-float('inf'), cache_modifier=".cg")
row_minus_max = row - tl.max(row, axis=0)
numerator = tl.exp(row_minus_max)
denominator = tl.sum(numerator, axis=0)
softmax_output = numerator / denominator
output_row_start_ptr = output_ptr + row_idx * output_row_stride
output_ptrs = output_row_start_ptr + col_offsets
output_ptrs = tl.multiple_of(output_ptrs, (16, ))
tl.store(output_ptrs, softmax_output, mask=mask)


device = torch.cuda.current_device()
properties = driver.active.utils.get_device_properties(device)
NUM_SM = properties["multiprocessor_count"]


def softmax(x):
n_rows, n_cols = x.shape
BLOCK_SIZE = triton.next_power_of_2(n_cols)

y = torch.empty_like(x)

#Persistent kernel. Simply, set num of programs equal to number of streaming multi-processors
num_programs = min(NUM_SM, n_rows)

grid = lambda meta: (num_programs, )
softmax_kernel[grid](
y,
x,
x.stride(0),
y.stride(0),
n_rows,
n_cols,
BLOCK_SIZE,
)

return y


def run_softmax(M, N):
print(f"Running Softmax on shape ({M},{N})")
torch.manual_seed(0)
x = torch.randn(M, N, device='cuda')
y_triton = softmax(x)

return y_triton


#pytest
@pytest.mark.parametrize('M, N', [
(1823, 781),
(1, 1),
(128, 1),
(1, 128),
(8192, 8192),
(4096, 8192),
(359, 1),
(1, 359),
(1, 131072),
])
def test_softmax(M, N):
torch.manual_seed(0)
x = torch.randn(M, N, device='cuda')
y_triton = softmax(x)
y_torch = torch.softmax(x, axis=1)
assert torch.allclose(y_triton, y_torch), (y_triton, y_torch)


#Benchmark
arg_to_torch_dtype = {'fp16': torch.float16, 'bf16': torch.bfloat16, 'fp32': torch.float32}


def run_benchmark(args):
config = []
if (args.M_benchmark):
val = args.M_start
x_vals_list = []
while val <= args.M_end:
x_vals_list.append(val)
val *= args.M_step
mn_args = {'N': args.N_start}
plot_name = str("softmax-performance_" + args.dtype + "_N" + str(args.N_start) + "_M" + str(args.M_start) +
"-" + str(args.M_end) + "-" + str(args.M_step))
x_names = ['M']
else:
x_vals_list = [i for i in range(args.N_start, args.N_end, args.N_step)]
mn_args = {'M': args.M_start}
plot_name = str("softmax-performance_" + args.dtype + "_M" + str(args.M_start) + "_N" + str(args.N_start) +
"-" + str(args.N_end) + "-" + str(args.N_step))
x_names = ['N']
dtype = arg_to_torch_dtype[args.dtype]

print(plot_name)
config.append(
triton.testing.Benchmark(
x_names=x_names,
x_vals=x_vals_list,
line_arg='provider',
line_vals=['triton', 'torch'],
line_names=[
"Triton",
"Torch",
],
styles=[('blue', '-'), ('green', '-')],
ylabel="GB/s",
plot_name=plot_name,
args=mn_args,
))

@triton.testing.perf_report(config)
def benchmark(M, N, provider):
x = torch.randn(M, N, device='cuda', dtype=dtype)
stream = torch.cuda.Stream()
torch.cuda.set_stream(stream)
if provider == 'torch':
ms = triton.testing.do_bench(lambda: torch.softmax(x, axis=-1))
if provider == 'triton':
ms = triton.testing.do_bench(lambda: softmax(x))
gbps = lambda ms: 2 * x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3)
return gbps(ms)

benchmark.run(save_path=".", show_plots=True, print_data=True)


def parse_args():
parser = argparse.ArgumentParser(
prog="Benchmark Softmax",
allow_abbrev=False,
)

parser.add_argument('-M', "--M_start", default="1", type=int)
parser.add_argument('-Ms', "--M_step", default="2", type=int)
parser.add_argument('-Me', "--M_end", default="512", type=int)
parser.add_argument('-Mb', "--M_benchmark", default=False, type=bool)

parser.add_argument('-N', "--N_start", default="1024", type=int)
parser.add_argument('-Ns', "--N_step", default="2048", type=int)
parser.add_argument('-Ne', "--N_end", default="65536", type=int)

parser.add_argument('-d', "--dtype", default="fp16")
parser.add_argument('-nb', "--no_benchmark", default=False, type=bool)

return parser.parse_args()


def main():
args = parse_args()
if args.no_benchmark:
run_softmax(args.M_start, args.N_start)
else:
run_benchmark(args)


if __name__ == "__main__":
sys.exit(main())

0 comments on commit 6d283a2

Please sign in to comment.