Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert nccl changes #351

Merged
merged 2 commits into from
Jan 8, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 38 additions & 27 deletions tests/distributed/test_pynccl.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,8 @@ def worker_fn():
device=get_world_group().device)
tensor = torch.ones(16, 1024, 1024,
dtype=torch.float32).cuda(pynccl_comm.rank)
tensor = pynccl_comm.all_reduce(tensor)
with pynccl_comm.change_state(enable=True):
tensor = pynccl_comm.all_reduce(tensor)
torch.cuda.synchronize()
assert torch.all(tensor == pynccl_comm.world_size).cpu().item()

Expand All @@ -80,16 +81,17 @@ def multiple_allreduce_worker_fn():
group = groups[0] if torch.distributed.get_rank() in [0, 1] else groups[1]
pynccl_comm = PyNcclCommunicator(group=group, device=device)
tensor = torch.ones(16, 1024, 1024, dtype=torch.float32, device=device)
# two groups can communicate independently
if torch.distributed.get_rank() in [0, 1]:
tensor = pynccl_comm.all_reduce(tensor)
tensor = pynccl_comm.all_reduce(tensor)
torch.cuda.synchronize()
assert torch.all(tensor == 4).cpu().item()
else:
tensor = pynccl_comm.all_reduce(tensor)
torch.cuda.synchronize()
assert torch.all(tensor == 2).cpu().item()
with pynccl_comm.change_state(enable=True):
# two groups can communicate independently
if torch.distributed.get_rank() in [0, 1]:
tensor = pynccl_comm.all_reduce(tensor)
tensor = pynccl_comm.all_reduce(tensor)
torch.cuda.synchronize()
assert torch.all(tensor == 4).cpu().item()
else:
tensor = pynccl_comm.all_reduce(tensor)
torch.cuda.synchronize()
assert torch.all(tensor == 2).cpu().item()


@pytest.mark.skipif(torch.cuda.device_count() < 4,
Expand Down Expand Up @@ -135,7 +137,9 @@ def worker_fn_with_cudagraph():
# run something in the default stream to initialize torch engine
a = torch.ones((4, 4), device=f'cuda:{pynccl_comm.rank}')
torch.cuda.synchronize()
with torch.cuda.graph(graph):
with torch.cuda.graph(
graph, stream=pynccl_comm.stream), pynccl_comm.change_state(
enable=True):
a_out = pynccl_comm.all_reduce(a)
torch.cuda.synchronize()
graph.replay()
Expand Down Expand Up @@ -164,7 +168,8 @@ def all_gather_worker_fn():
for r in range(world_size)
]).to(device)

pynccl_comm.all_gather(result, tensor)
with pynccl_comm.change_state(enable=True):
pynccl_comm.all_gather(result, tensor)
torch.cuda.synchronize()
torch.testing.assert_close(result, expected, rtol=1e-5, atol=1e-8)

Expand Down Expand Up @@ -201,7 +206,8 @@ def reduce_scatter_worker_fn():
expected = sum(tensor[rank * scattered_size:(rank + 1) * scattered_size]
for tensor in all_tensors).to(device)

pynccl_comm.reduce_scatter(result, tensor)
with pynccl_comm.change_state(enable=True):
pynccl_comm.reduce_scatter(result, tensor)
torch.cuda.synchronize()
torch.testing.assert_close(result, expected, rtol=1e-5, atol=1e-8)

Expand All @@ -228,13 +234,15 @@ def send_recv_worker_fn():
else:
tensor = torch.empty(16, 1024, 1024,
dtype=torch.float32).cuda(pynccl_comm.rank)

if pynccl_comm.rank == 0:
pynccl_comm.send(tensor,
dst=(pynccl_comm.rank + 1) % pynccl_comm.world_size)
else:
pynccl_comm.recv(tensor,
src=(pynccl_comm.rank - 1) % pynccl_comm.world_size)
with pynccl_comm.change_state(enable=True):
if pynccl_comm.rank == 0:
pynccl_comm.send(tensor,
dst=(pynccl_comm.rank + 1) %
pynccl_comm.world_size)
else:
pynccl_comm.recv(tensor,
src=(pynccl_comm.rank - 1) %
pynccl_comm.world_size)
torch.cuda.synchronize()
assert torch.all(tensor == 1).cpu().item()

Expand Down Expand Up @@ -265,12 +273,15 @@ def multiple_send_recv_worker_fn():
1024,
dtype=torch.float32,
device=device)
if torch.distributed.get_rank() in [0, 1]:
pynccl_comm.send(tensor,
dst=(pynccl_comm.rank + 1) % pynccl_comm.world_size)
else:
pynccl_comm.recv(tensor,
src=(pynccl_comm.rank - 1) % pynccl_comm.world_size)
with pynccl_comm.change_state(enable=True):
if torch.distributed.get_rank() in [0, 1]:
pynccl_comm.send(tensor,
dst=(pynccl_comm.rank + 1) %
pynccl_comm.world_size)
else:
pynccl_comm.recv(tensor,
src=(pynccl_comm.rank - 1) %
pynccl_comm.world_size)
torch.cuda.synchronize()
if torch.distributed.get_rank() in [0, 2]:
assert torch.all(tensor == 1).cpu().item()
Expand Down
43 changes: 35 additions & 8 deletions vllm/distributed/device_communicators/pynccl.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from contextlib import contextmanager
from typing import Optional, Union

# ===================== import region =====================
Expand Down Expand Up @@ -50,6 +51,7 @@ def __init__(
if self.world_size == 1:
self.available = False
self.disabled = True
self.stream = None
return
try:
self.nccl = NCCLLibrary(library_path)
Expand All @@ -58,6 +60,7 @@ def __init__(
# e.g. in a non-GPU environment
self.available = False
self.disabled = True
self.stream = None
return

self.available = True
Expand Down Expand Up @@ -95,12 +98,12 @@ def __init__(
with torch.cuda.device(device):
self.comm: ncclComm_t = self.nccl.ncclCommInitRank(
self.world_size, self.unique_id, self.rank)
self.stream = torch.cuda.Stream()

stream = torch.cuda.current_stream()
# A small all_reduce for warmup.
data = torch.zeros(1, device=device)
self.all_reduce(data)
stream.synchronize()
self.stream.synchronize()
del data

def all_reduce(self,
Expand All @@ -119,7 +122,7 @@ def all_reduce(self,
out_tensor = torch.empty_like(in_tensor)

if stream is None:
stream = torch.cuda.current_stream()
stream = self.stream
self.nccl.ncclAllReduce(buffer_type(in_tensor.data_ptr()),
buffer_type(out_tensor.data_ptr()),
in_tensor.numel(),
Expand All @@ -141,7 +144,7 @@ def all_gather(self,
f"this nccl communicator is created to work on {self.device}, "
f"but the input tensor is on {input_tensor.device}")
if stream is None:
stream = torch.cuda.current_stream()
stream = self.stream
self.nccl.ncclAllGather(
buffer_type(input_tensor.data_ptr()),
buffer_type(output_tensor.data_ptr()), input_tensor.numel(),
Expand All @@ -162,7 +165,7 @@ def reduce_scatter(self,
f"this nccl communicator is created to work on {self.device}, "
f"but the input tensor is on {input_tensor.device}")
if stream is None:
stream = torch.cuda.current_stream()
stream = self.stream
self.nccl.ncclReduceScatter(
buffer_type(input_tensor.data_ptr()),
buffer_type(output_tensor.data_ptr()), output_tensor.numel(),
Expand All @@ -177,7 +180,7 @@ def send(self, tensor: torch.Tensor, dst: int, stream=None):
f"this nccl communicator is created to work on {self.device}, "
f"but the input tensor is on {tensor.device}")
if stream is None:
stream = torch.cuda.current_stream()
stream = self.stream
self.nccl.ncclSend(buffer_type(tensor.data_ptr()), tensor.numel(),
ncclDataTypeEnum.from_torch(tensor.dtype), dst,
self.comm, cudaStream_t(stream.cuda_stream))
Expand All @@ -189,7 +192,7 @@ def recv(self, tensor: torch.Tensor, src: int, stream=None):
f"this nccl communicator is created to work on {self.device}, "
f"but the input tensor is on {tensor.device}")
if stream is None:
stream = torch.cuda.current_stream()
stream = self.stream
self.nccl.ncclRecv(buffer_type(tensor.data_ptr()), tensor.numel(),
ncclDataTypeEnum.from_torch(tensor.dtype), src,
self.comm, cudaStream_t(stream.cuda_stream))
Expand All @@ -201,7 +204,7 @@ def broadcast(self, tensor: torch.Tensor, src: int, stream=None):
f"this nccl communicator is created to work on {self.device}, "
f"but the input tensor is on {tensor.device}")
if stream is None:
stream = torch.cuda.current_stream()
stream = self.stream
if src == self.rank:
sendbuff = buffer_type(tensor.data_ptr())
# NCCL requires the sender also to have a receive buffer
Expand All @@ -212,3 +215,27 @@ def broadcast(self, tensor: torch.Tensor, src: int, stream=None):
self.nccl.ncclBroadcast(sendbuff, recvbuff, tensor.numel(),
ncclDataTypeEnum.from_torch(tensor.dtype), src,
self.comm, cudaStream_t(stream.cuda_stream))

@contextmanager
def change_state(self,
enable: Optional[bool] = None,
stream: Optional[torch.cuda.Stream] = None):
"""
A context manager to change the state of the communicator.
"""
if enable is None:
# guess a default value when not specified
enable = self.available

if stream is None:
stream = self.stream

old_disable = self.disabled
old_stream = self.stream

self.stream = stream
self.disabled = not enable
yield

self.disabled = old_disable
self.stream = old_stream
10 changes: 9 additions & 1 deletion vllm/distributed/parallel_state.py
Original file line number Diff line number Diff line change
Expand Up @@ -305,7 +305,15 @@ def graph_capture(
stream.wait_stream(curr_stream)

with torch.cuda.stream(stream), maybe_ca_context:
yield graph_capture_context
pynccl_comm = self.pynccl_comm
maybe_pynccl_context: Any
if not pynccl_comm:
maybe_pynccl_context = nullcontext()
else:
maybe_pynccl_context = pynccl_comm.change_state(
stream=torch.cuda.current_stream())
with maybe_pynccl_context:
yield graph_capture_context

def all_reduce(self, input_: torch.Tensor) -> torch.Tensor:
"""
Expand Down
Loading