Skip to content

base quantization methods including: QAT, PTQ, per_channel, per_tensor, dorefa, lsq, adaround, omse, Histogram, bias_correction.etc

Notifications You must be signed in to change notification settings

Ranking666/Base-quantization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Base-quantization

accomplished

  • 2022.11.2
    • Base QAT, PTQ
    • Per_tensor, Per_channel
    • Minmax, EmaMinmax, Histogram, omse, adaround, bias_correction
    • dorefa, lsq

Requirements

Python > 3.6 + Pytorch >= 1.6

Usage

base quazation

such as QAT per_layer

python main.py --type QAT --level L

You can change --type and --level to choose different quazation method

adaround

python main.py --type PTQ --adaround --level L

bias_correction

python main.py --type PTQ --bias_correction --level L

Histogram

python main.py --type PTQ --Histogram --level L

omse

python main.py --type PTQ --omse --level L

dorefa

python main.py --type QAT --dorefa --level L

lsq

python main.py --type QAT --lsq --level L

Example

Models VGG_S
QAT_8 99.4
dorefa_4_32 99.46
dorefa_6_32 99.56
LSQ_8 99.48
PTQ_bias_correction 99.43
PTQ_adaround 99.41

Note

  • LSQ need pretrained model to inital scale
  • Because MNIST is small, different quanzation methods all can compress the model without accuracy drop
  • The code structure is simple and easy to expand other sota quanzation methods

About

base quantization methods including: QAT, PTQ, per_channel, per_tensor, dorefa, lsq, adaround, omse, Histogram, bias_correction.etc

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages