An arbitrary-precision arithmetic library for the OpenGL Shading Language (GLSL)
float mandelbrot() {
uint c_r[ARRAY_SIZE];
uint c_i[ARRAY_SIZE];
uint z_r[ARRAY_SIZE];
uint z_i[ARRAY_SIZE];
load(c_r, -0.75);
load(c_i, 0.1);
zero(z_r);
zero(z_i);
uint nz_r[ARRAY_SIZE];
uint nz_i[ARRAY_SIZE];
int iterations = 64;
for (int k = 0; k < iterations; k++) {
uint tmp[ARRAY_SIZE];
uint radius[ARRAY_SIZE];
mul(z_r, z_r, tmp);
mul(z_i, z_i, radius);
add(radius, tmp, radius);
if (radius[1] > 4) {
return float(k) / float(iterations);
}
mul(z_i, z_i, nz_r);
negate(nz_r);
mul(z_r, z_r, tmp);
add(nz_r, tmp, nz_r);
add(nz_r, c_r, nz_r);
load(nz_i, 2.0);
mul(nz_i, z_r, nz_i);
mul(nz_i, z_i, nz_i);
add(nz_i, c_i, nz_i);
assign(z_r, nz_r);
assign(z_i, nz_i);
}
return 0.0;
}
Numbers are encoded using an array of unsigned integers (uint) in the following format:
- 0: The number is non-negative
- 1: The number is negative
- Represents the whole (integer) part of the number
- Each subsequent element represents fractional values that are 2^32 times smaller than the previous one.
[0, 42]
[1, 42, 2147483648] // 2147483648 represents 0.5 as 2^31 = 2147483648
[0, 0, 0, 1]